西安汽车电子功放

时间:2022年06月01日 来源:

射频功率放大器(RF PA)是对输出功率、功耗、失真、效率、激励电平、尺寸和重量等问题作综合考虑的电子电路,是各种无线发射机的重要组成部分。在发射系统中,射频功率放大器(RF PA)输出功率的范围可以小至mW,大至数kW,但是这是指末级功率放大器(RF PA)的输出功率。为了实现大功率输出,末前级就必须要有足够高的激励功率电平。射频功率放大器(RF PA)是发送设备的重要组成部分。射频功率放大器(RF PA)的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高。西安汽车电子功放

射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了能够获得足够大的射频输出功率,必须采用射频功率放大器(RF PA)。在调制器产生射频信号后,射频已调信号就由 RF PA 将它放大到足够功率,经匹配网络,再由天线发射出去。放大器的功能,即将输入的内容加以放大并输出。西安脉冲功率源生产厂请将功率放大器置于通风干燥的环境中使用,环境温度不可超过 40℃。

射频功率放大器(RF PA)如下:射频PA的效率提升技术:晶体管的效率都有一个理论上的极限。这个极限随偏置点(静态工作点)的选择不同而不同。另外,外部电路设计得不好,也会有效降低其效率。目前工程师们对于效率提升的办法不多。这里只讲两种:包络追踪技术与Doherty技术。 包络追踪技术的实质是:将输入分离为两种:相位和包络,再由不同的放大电路来分别放大。这样,两个放大器之间可以专注的负责其各自的部分,二者配合可以达到更高的效率利用的目标。 Doherty技术的实质是:采用两只同类的晶体管,在小输入时只一个工作,且工作在高效状态。如果输入增大,则两个晶体管同时工作。这种方法实现的基础是二只晶体管要配合默契。一种晶体管的工作状态会直接的决定了另一支的工作效率。

射频功率放大器(RF PA)匹配电路的目的是在选择一种接受的方式。对于那些想提供更大增益的晶体管来说,其途径是全盘的接受和输出。这意味着通过匹配电路这一个接口,不同的晶体管之间沟通更加顺畅,对于不同种的放大器类型来说,匹配电路并不是只有“全盘接受”一种设计方法。一些直流小且根基浅的小型管,更愿意在接受的时候做一定的阻挡,来获取更好的噪声性能,然而不能阻挡过了头,否则会影响其贡献。而对于一些巨型功率管,则需要在输出时谨小慎微,因为他们更不稳定,同时,一定的保留有助于他们发挥出更多的“不扭曲的”能量。射频功率放大器(RF PA)的主要技术指标是输出功率与效率。

传统线性功率放大器(RF PA)的工作频率很高,但相对频带较窄,射频功率放大器(RF PA)一般都采用选频网络作为负载回路。射频功率放大器(RF PA)可以按照电流导通角的不同,分为甲、乙、丙三类工作状态。甲类放大器电流的导通角为360°,非常适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中较高的。射频功率放大器(RF PA)大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。功放是功率放大器(RF PA)的缩写。甲类功放购买

功放可以分做两个主要类别,即特定功放与民用功放。西安汽车电子功放

确保射频功率放大器(RF PA)稳定的实现方式:每一个晶体管都是潜在不稳定的。好的稳定电路能够和晶体管融合在一起,形成一种可持续工作的模式。稳定电路的实现方式可划分为两种:窄带的和宽带的。 窄带的稳定电路是进行一定的增益消耗。这种稳定电路是通过增加一定的消耗电路和选择性电路实现的。这种电路使得晶体管只能在很小的一个频率范围内贡献。另外一种宽带的稳定是引入负反馈。这种电路可以在一个很宽的范围内工作。 不稳定的根源是正反馈,窄带稳定思路是遏制一部分正反馈,当然,这也同时抑制了贡献。而负反馈做得好,还有产生很多额外的令人欣喜的优点。比如,负反馈可能会使晶体管免于匹配,既不需要匹配就可以与外界很好的接洽了。另外,负反馈的引入会提升晶体管的线性性能。西安汽车电子功放

热门标签
信息来源于互联网 本站不为信息真实性负责