青海双掺CeYAG晶体研发

时间:2022年04月19日 来源:

无机闪烁晶体(Ce:YAG)的闪烁机理之电子空穴对的产生,该过程可由以下公式(1.1)表示:A + hν → A+ + e在上式中,hν 是入射γ光子的能量;a表示是无机闪烁晶体中的原子;a+是离子;e是产生的一次电子。在这个过程中,原子的内层也会产生初级空穴。闪烁机制的第二步是电子和空穴的豫过程。一方面,对于非辐射豫或辐射豫,A离子通过内部空穴从K层迁移到L、M和其他俄歇层而发射光子,从而发射俄电子。通常,非辐射豫的概率远远大于辐射豫的概率。CeYAG闪烁晶体是一种当被电离辐射激发之后会表现出发光特性的材料。青海双掺CeYAG晶体研发

CeYAG是一种重要的具有优良闪烁性能的闪烁晶体,具有高的发光效率和宽的光脉冲,较大优点是其发光中心波长为550nm,可以与硅光二极管等探测设备有效耦合。同CsI闪烁晶体相比,CeYAG闪烁晶体具有快衰减时间(约70ns,而CsI衰减时间约为300ns),而且CeYAG闪烁晶体不潮解、耐高温、热力学性能稳定,主要应用在轻粒子探测、α粒子探测、gamma射线探测等领域,另外它还可以应用于电子探测成像(SEM)、高分辨率显微成像荧光屏等领域。由于Ce离子在YAG基质中的分凝系数小(约为0.1),使Ce离子很难掺入YAG晶体中,而且随着晶体直径的增大,晶体生长难度急剧增加。青海双掺CeYAG晶体研发Ce:YAG单片机还可以作为扫描电子显微镜的显示元件。

CeYAG晶体的良好的温度机械性能有利于制备出低于0.005mm厚度的超薄成像屏。在电子或者离子轰击下CeYAG晶体不产生损伤,适合应用于高电流环境。CeYAG晶体的发光峰位置位于560nm左右,很适合使用S20光电倍增管进行发射探测。在5KV之内以及超过100KV的更高加速电压下,CeYAG晶体具有更好的响应,在该环境下粉末闪烁体性能开始下降,而CeYAG晶体的相应仍然保持线性增加。尽管CeYAG晶体的信号比P47弱,但是信噪比高,终端信号更好。CeYAG晶体的衰减时间为60ns。使用中为了避免光敏感,通常需要镀50nm的铝膜。CeYAG晶体,提拉法和温梯法生长,直径110mm,厚度0.15-150mm。

激子和类激子荧光机制。这种机制主要依赖于晶体中产生的自陷激子(STE)、电子缺陷激子或类激子激子以及闪烁体中产生闪烁荧光的电子或空穴[[21]。在一些卤素结合的无机闪烁晶体中,通常可以获得小于10ns的光衰减。例如,CdF2闪烁晶体的光衰减约为7ns。但由于激发能量必须与被激发的激子或类激子能量相同或相近,所以具有这种闪烁机制的无机闪烁晶体的光输出一般很低,STEs荧光往往在室温下被淬灭。尽管某些碱土氟化物晶体的ste在室温下具有大的光输出,但它们的光衰减接近毫秒。因此,具有这种发光机制的闪烁晶体只能用于特殊目的。如今无机闪烁晶体的闪烁机制不断得到改进和发展。

目前,Ce:YAG高温闪烁晶体业已商品化,主要用于扫描电镜(SEM)的显示部件,其生长方法主要为提拉法和温梯法。近年来, Ce:YAG单晶薄膜[84],以及Ce:YAG陶瓷[85-87]等闪烁体由于有其独特的优势也备受人们的关注.为了填补我国在高温闪烁晶体研究领域的空白,本论文选取具有优良闪烁性能的Ce:YAP和Ce:YAG高温闪烁晶体为研究对象,围绕高温闪烁晶体存在的主要问题及其发展趋势,重点开展了提拉法与温梯法生长Ce:YAP和Ce:YAG晶体的研究与表征工作。CeYAG单晶在340nm和460nm处有明显的吸收峰。青海双掺CeYAG晶体研发

CeYAG晶体的优势:发射波长与硅光二极管的灵敏探测波长匹配。青海双掺CeYAG晶体研发

随着高能物理、核物理及相关科学技术的快速发展,传统无机闪烁晶体的缺点日益突出。寻找新的高光输出快速衰减的无机闪烁晶体具有重要的科学意义和巨大的市场价值。20世纪80年代末和90年代初,国际上掀起了对高光输出快速衰减的无机闪烁晶体的研究热潮。其中,1990年成立的隶属于欧洲核中心(CERN)的“水晶透明协作”研究小组,是由来自十几个国家的材料科学家、固体物理学家和探测器**组成的跨学科研究小组[39]。其主要目标是研究和开发新的无机闪烁晶体,以满足日益增长的大型强子对撞机(LHC)和其他高能物理实验对闪烁探测器的需求。青海双掺CeYAG晶体研发

上海蓝晶光电科技有限公司致力于电子元器件,是一家生产型公司。公司业务分为Ce:YAG,Ce:YAP,Tm:YAP,Yb:YAG等,目前不断进行创新和服务改进,为客户提供良好的产品和服务。公司从事电子元器件多年,有着创新的设计、强大的技术,还有一批专业化的队伍,确保为客户提供良好的产品及服务。在社会各界的鼎力支持下,持续创新,不断铸造***服务体验,为客户成功提供坚实有力的支持。

信息来源于互联网 本站不为信息真实性负责