湖南大尺寸YbYAG晶体好不好

时间:2022年10月08日 来源:

YbYAG晶体是一种综合性能很好的固体激光工作物质,由于Yb3+离子的吸收和发射谱带简单,激光上能级无激发态自吸收和上转换,辐射,峰值位于940nm和970nm的吸收线宽宽,吸收系数大,与InGaAs二极管发光波长很好配,非常适合LD泵浦。该晶体比起其它传统的钕掺杂YAG更适合用于二极管泵浦激光系统。与掺钕YAG晶体相比,掺镱YAG具有宽得多的吸收带宽从而降低了设计二极管激光器时的热控制要求。以上的一些相关知识的介绍,希望能够对你有帮助。YbYAG晶体具有量子效率高,无激发态吸收和上转换。湖南大尺寸YbYAG晶体好不好

不同掺杂浓度的YbYAG晶体,通过不同Yb3杂浓度30at﹪的YbYAG晶休的阴极射线发光谱,衰减时间,光输出及其温度依赖关系的测量研究了YbYAG晶体的闪烁性能。不同Yb3,掺杂浓度的YbYAG晶体具有不同的光输出和淬灭温度,光输出随Yb,掺杂浓度升高而降低,淬灭温度则随掺杂浓度的升高而升高。室温下YbYAG晶体的发光衰减时间较短,均小于SOnsoY63掺杂浓度为5at﹪的YbYAG晶体具有较高的光输出和较低的淬灭温度。采用提拉法生长了原子分数为10%的Yb和不同掺杂浓度Cr的Cr,Yb:YAG激光晶体.测试了室温下晶体的吸收光谱,荧光光谱和荧光寿命。北京提拉法生长YbYAG晶体材料YbYAG晶体是一种发展前景巨大的固体激光工作物质。

在高倍率光学显微镜下观察YbYAG单晶光纤,可该光纤外形均匀规则,且生长状态稳定,透明性较高。高长径比的YbYAG单晶光纤,展现出的柔性特征将有利于实现全固态、高紧凑性的高功率激光器件。后续通过不断优化单晶光纤的质量,将大幅推进单晶光纤作为高性能光功能材料的实用化进程。掺镱钇铝石榴石晶体,化学式:YbYAG,具有纳秒级超快时间响应特性,在脉冲辐射探测领域有重要应用。是适合高平均功率和高光束质量发射的激光材料。上文的介绍,希望能对你有帮助。

脉冲LD端面抽运变热导率方片YbYAG晶体温度场,对脉冲激光二极管(LD)端面抽运变热导率方片YbYAG晶体的温度场进行了分析和研究,建立了端面绝热,周边恒温的热传导模型,采用半解析理论,结合牛顿法得到了晶体的温度场分布,分析了不同的抽运功率,超高斯阶次,光斑半径和晶体尺寸因素对晶体温度场的影响。计算结果表明,当采用抽运功率为80w,超高斯半径为400μm,超高斯阶次为3的脉冲激光二极管对晶体进行抽运时,在将YbYAG晶体的热导率分别视为常量和非常量的情况下,该晶体在抽运端面处获得的较大温升分别为31.69,35.66℃.研究结果为激光器的设计提供了一定的理论指导。YbYAG晶体的生长装置:坩埚和籽晶夹、气氛控制系统等。

对YbYAG晶体感兴趣的可以来看看下文的一些相关知识的介绍,激光二极管抽运低温YbYAG再生放大器,对YbYAG晶体荧光谱线的分析,讨论了其低温条件下的增益特性.利用激光二极管作为抽运源,采用背向端面抽运方式,使用掺杂原子数分数为8%的片状YbYAG晶体,搭建了一台低温条件下工作的再生放大器。通过小能量信号光注入,在-90℃的低温下,可以得到重复频率10Hz,脉宽10ns,能量10.3mJ的激光脉冲输出,放大倍数达107倍。希望以上的介绍能够对你有帮助。YbYAG(掺镱钇铝石榴石)适用于高功率输出。福建高掺杂浓度YbYAG晶体批发价

YbYAG晶体激光上能级无激发态自吸收和上转换。湖南大尺寸YbYAG晶体好不好

室温下YbYAG的上转换荧光光谱,此荧光归因于Yb3+离子的“合作”发光和Yb3+离子到稀土杂质离子的能量转移。测试了YbYAG晶体的X射线荧光,发光峰对应于电荷迁移态到Yb3+离子的基态,激光态间的跃迁。研究了Cr,YbYAG晶体的荧光光谱,讨论了Cr4+激光输出的可能性。YbYAG晶体比NdYAG晶体更适用于产生和放大具有Hz量级重复频率的高脉冲能量激光。在相同的半导体泵浦功率下,Yb:YAG泵浦生热为Nd:YAG的三分之一,就够很容易的被InGaAs半导体激光器所泵浦,是一种适合LD泵浦的高平均功率和高光束质量的发射1um左右波长的激光材料。湖南大尺寸YbYAG晶体好不好

上海蓝晶光电科技有限公司是一家有着先进的发展理念,先进的管理经验,在发展过程中不断完善自己,要求自己,不断创新,时刻准备着迎接更多挑战的活力公司,在上海市等地区的电子元器件中汇聚了大量的人脉以及**,在业界也收获了很多良好的评价,这些都源自于自身不努力和大家共同进步的结果,这些评价对我们而言是比较好的前进动力,也促使我们在以后的道路上保持奋发图强、一往无前的进取创新精神,努力把公司发展战略推向一个新高度,在全体员工共同努力之下,全力拼搏将共同上海蓝晶光电供应和您一起携手走向更好的未来,创造更有价值的产品,我们将以更好的状态,更认真的态度,更饱满的精力去创造,去拼搏,去努力,让我们一起更好更快的成长!

信息来源于互联网 本站不为信息真实性负责