广西双循环厌氧罐优点

时间:2023年11月16日 来源:

众所周知,高效厌氧反应器是污水处理系统的中间。在实际运行中,经常会出现一些异常状况,如厌氧颗粒污泥流失等,持续跑泥,必然会造成厌氧反应器污泥量减少,同时处理能力降低。近日,我们就收到一客户的咨询:“我们的厌氧反应器刚启动,但是一直在跑泥,这样下去,污泥很快就要跑光了,这是什么原因?跑泥的原因:厌氧反应器正常运行时,也会有少量死亡的、新陈代谢的厌氧污泥随水流失,若流失量明显大于产泥量,就称为大家常说的“跑泥”,那就需要特别重视了。造成跑泥的原因有很多,常见的因素有:污泥空心,沉降性不好,上升流速过快,沼气管路堵塞,底部布水器设计不合理,三相分离器设计不合理,污泥床层搅动不充分,污泥中毒死亡等。厌氧反应器的结构主要由污泥床、污泥悬浮层、沉积区和三相别离器组成。广西双循环厌氧罐优点

厌氧反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。在USAB反应器中很重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器很主要的目的就是尽可能有效地分离从污泥床中产生的沼气。特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。山西uasb厌氧罐试水由于反应器存在着内循环,反应室有很高的升流速度,传质效果很好,污泥活性很高。

全混合厌氧反应器(continuousstirredtankreactor,简称CSTR)或称连续搅拌反应器系统,是一种使发酵原料和微生物处于完全混合状态的厌氧处理技术。在一个密闭罐体内完成料液的发酵、沼气产生的过程。消化器内安装有搅拌装置,使发酵原料和微生物处于完全混合状态。投料方式采用恒温连续投料或半连续投料运行。新进入的原料由于搅拌作用很快与发酵器内的全部发酵液菌种混合,使发酵底物浓度始终保持相对较低状态,以降解废水中有机污染物,并去除悬浮物的厌氧废水生物处理器。结构形式见图3:

厌氧反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。废水从污泥床底部流入,与颗粒污泥混合接触,污泥中的微生物分解有机物,同时产生的微小沼气气泡不断放出。微小气泡上升过程中,不断合并,逐渐形成较大的气泡,部分附着在颗粒污泥上。在颗粒污泥层的上部,因水流和气泡的搅动,由于沼气的搅动,形成一个污泥浓度较小的悬浮污泥层,可进一步分解有机物。气、固、液混合体逐渐上升经三相分离器后,其沼气进入气室,污泥在沉淀区进行沉淀,并经回流缝回流到污泥床。经沉淀澄清后的废水作为处理水排出反应器。IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:深度净化室。

厌氧反应的阶段:水解阶段,目的:高分子有机物转化为小分子有机物。因为高分子有机物的分子质量相对巨大,不能透过细胞膜,就不可能被细菌直接利用。因此,它们在首先一阶段,就被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌利用。酸化阶段,目的:上一阶段产生的小分子有机物转化为挥发酸。在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内,转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有,挥发性脂肪酸(VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未充分酸化的废水,在厌氧处理时会产生更多的剩余污泥。厌氧反应器优点:处理高纤维含量污水不易堵塞,不易积累。福建升流式厌氧罐规格

厌氧反应器的设计应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室。广西双循环厌氧罐优点

把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器的,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。上海正泽环保科技有限公司广西双循环厌氧罐优点

信息来源于互联网 本站不为信息真实性负责