吉林ic内循环厌氧罐功能

时间:2022年06月24日 来源:

厌氧反应器的运行控制要点,主要有以下几点:污泥菌种:厌氧污泥中具有处理污染物能力的就是细菌等有机物质,菌群的组成及菌种的成分决定了其颗粒强度、产甲烷活性及对污水的适应能力。一般来说,厌氧颗粒污泥中有机物成分占70%左右,污泥外部菌种主要为丝菌,污泥内部主要为杆菌、球菌等。pH值:反应器进水pH值一般应控制在6.5~7.5之间,过高或过低的pH值都会对工艺造成影响,主要体现在对厌氧菌(主要是产甲烷菌)活性的影响,包括:影响菌体及酶系统的生理功能和活性。影响环境的氧化还原电位。影响基质的活性,产甲烷菌的这些性质功能遭到破坏后,处理COD的活性就会降低。厌氧反应器由于其处理能力高,通常用来处理高浓度有机废水。吉林ic内循环厌氧罐功能

IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:进液和混合-布水系统。废水经供料泵进入反应器内,并与从IC反应器上部返回的循环水有效混合,由此产生对进液的稀释和均质作用,提高系统的抗冲击能力。流化床反应室。通过布水器后,废水和颗粒污泥混合物在进水与循环水的共同推动下,迅速进入流化床室。废水和污泥之间产生强烈和有效的接触,这导致很高的污染物向生物物质(即颗粒污泥)的传质速率。在流化床反应室内,废水中的绝大部分可生物降解的污染物被转化为沼气。这些沼气在被一级三相分离器处收集并导入气体上升管,通过这个上升管部分泥水混合物被传送到反应器较上部的气液分离器,气体分离后从反应器导出。山东高负荷厌氧罐检修厌氧接触反应器的负荷率、有机物降解率较高。

运行注意事项:在厌氧处理系统中,应尽量避免硫酸盐的进入,但在实际生产中,可能由于客观的原因,我们无法避免硫酸盐随生产排水进入厌氧系统,这时,操作运行应注意三点:1.理想的状态下,COD和硫酸根的比例较好维持在10:1以上,较少也应控制在5:1以上,以保证厌氧反应器中产甲烷反应处于主导地位。如果比例失调,需要进行预处理或者引入硫酸盐浓度较低的其他废水进行稀释。2.正常运行时,游离的硫化氢浓度应占总硫化氢浓度的20%以下。所以厌氧反应器运行时,还需控制厌氧进水中的硫酸根浓度在1000mg/l以下,以保证反应器中有毒性的游离硫化氢浓度多多低于250mg/l。3.对于硫酸盐浓度相对较高的废水,也可适当提高进水中的pH值,使厌氧反应器中的pH值保持中性或弱碱性,以降低游离硫化氢的浓度。

厌氧反应器异常现象的原因分析及解决:厌氧污泥上浮。原因:三相分离器气室有浮泥,导致沼气排气不顺;负荷突然增加,产气过大,高于分离器能力;温度突然增高,产气过大,高于分离器能力;水封高度有问题;废水中蛋白质产生泡沫以及其他有机物的降解过程中产生的中间产物可能降低了液体的表面张力,从而产生泡沫。解决办法:降水位,冲洗;降负荷;慢升温,回流;调整水封水位。颗粒污泥破碎分散。原因:由于负荷或进液浓度突然变化;预酸化度突然增加,使产酸菌处于饥饿状态;或有毒物质存在于废水中。解决方法:应用更稳定的预酸化条件;进行脱毒的预处理;延长驯化时间稀释进液;降低负荷与上升流速度以及水流剪切力,采用出水循环以增大选择压力,使絮状污泥洗出。为了保证每一个进水点达到其应得的进水流量,建议采用高于厌氧反应器的水箱式进水分配系统。

UASB反应器的构成:三相分离器的设计,应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室。应该认识到有时污泥膨胀到沉淀器中不是一件坏事。相反,存在于沉淀器内的膨胀污泥层将网捕分散的污泥颗粒/絮体,同时它还对可生物降解的溶解性COD起到一定的去除作用。另一方面,存在一定可供污泥层膨胀的自由空间,以防止较重的污泥在暂时性有机或水力负荷冲击下面失是很重要的。水力和有机(产气率)负荷率两者都会影响到污泥层以及污泥床的膨胀。USAB系统原理是在形成沉降性能良好的污泥絮体的基础上,并结合在反应器内设置污泥沉淀系统,使气体、液体和固体得到分离,形成和保持沉淀性能良好的污泥(颗粒或者絮状污泥),是USAB系统良好运行的根本点。厌氧反应器对于某种废水,厌氧污泥具有一个较大的限制值。山东高负荷厌氧罐检修

厌氧反应器不但体积小,而且有很大的高径比,所以占地面积特别省,非常适用于占地面积紧张的厂矿企业。吉林ic内循环厌氧罐功能

厌氧反应器的工艺特点:1、厌氧反应器拥有独特的内循环系统,加强了废水中有机物和颗粒污泥间的传质,从而大幅提高了反应器的COD容积负荷;2、厌氧反应器的有机负荷是普通UASB反应器的3倍左右;3、厌氧反应器在保证去除效果的条件下,能达到较低的水力停留时间。总的来说,厌氧反应器具有容积负荷率高、处理容量大、投资少、占地面积小、启动速度快、运行稳定等优点,并在酒精、制药、啤酒、造纸、印染等工业废水的处理中发挥了较高的去除效果,在工程技术上已经趋于成熟。吉林ic内循环厌氧罐功能

信息来源于互联网 本站不为信息真实性负责