海南上流式厌氧罐原理

时间:2022年07月04日 来源:

如何判断厌氧颗粒污泥的活性?弹性。用手按压厌氧污泥时,能够感受到厌氧污泥有轻微的弹性。沉降速度。厌氧颗粒污泥的沉降速度应保持在50~150m/h之间;若沉降速度过快,说明污泥中的厌氧细菌比较少,钙等无机成分比较多;沉降速度过慢,在上升流速较高或者受冲击时,容易造成污泥流失。沉降速度计算方法:在200ml的量筒中装满清水,测量液面高度为h,然后将少量的厌氧颗粒放在水面,记录污泥从液面沉降到筒底的平均时间为S,h/S即可得到沉降速度。外循环厌氧反应器是传统的膨胀颗粒污泥床反应器的改进型,属于高效厌氧反应器。海南上流式厌氧罐原理

厌氧反应器运行过程中,较严重的问题就是“厌氧反应器酸化”,在较恶劣的情况下,需要更换整个反应器内的厌氧污泥,损失可达几十万甚至上百万。厌氧反应器发生酸化的原因是什么呢?厌氧反应器发生酸化的原因分析:厌氧反应器发生酸化的根源,是厌氧污泥中产甲烷菌的产甲烷能力不足以分解水解酸化菌所产出的有机酸,同时pH值的下降会使未降解的VFA浓度上升,对产甲烷菌产生进一步的抑制,使反应器继续酸化,形成恶性循环,较终导致反应器酸化。黑龙江塞流式厌氧罐报价表厌氧反应器出液的pH一般等于或接近于反应器内的pH。

厌氧反应的阶段:水解阶段,目的:高分子有机物转化为小分子有机物。因为高分子有机物的分子质量相对巨大,不能透过细胞膜,就不可能被细菌直接利用。因此,它们在首先一阶段,就被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌利用。酸化阶段,目的:上一阶段产生的小分子有机物转化为挥发酸。在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内,转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有,挥发性脂肪酸(VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未充分酸化的废水,在厌氧处理时会产生更多的剩余污泥。

厌氧反应器是UASB厌氧反应器、膨胀颗粒污泥床以及传统的内循环厌氧反应器的改进产品,属第三代厌氧反应器。厌氧反应器在处理高浓度有机废水、高悬浮物及高生物毒性废水与间歇性生产废水领域有独特的优势,对CODcr的去除率在95%左右,产生的沼气与颗粒污泥可作为资源进行回收,为企业带来可观的经济效益和社会效益。与前二代厌氧器相比、它具有占地面积少、容积负荷量高,布水均匀,抗冲击能力强、性能更稳定、操作更简单的多种优势。例如,当COD为10000-15000mg/L时的高浓度有机废水,第二代反应器一般容积负荷为5-8 kgCOD/(m3•d), 第三代厌氧反应器容积负荷可达到10-18 kgCOD/(m3•d)。厌氧反应器不但体积小,而且有很大的高径比,所以占地面积特别省,非常适用于占地面积紧张的厂矿企业。

厌氧反应器:厌氧消化中非产甲烷菌降解有机物的过程可产生大量的VFA和CO2,明显降低系统pH;而产甲烷菌则在利用乙酸、甲酸、氢形成甲烷的过程中消耗有机酸和CO2。两者的共同作用可使反应体系内pH稳定在一个适宜的范围内,并使废水中COD顺利地降解为甲烷、CO2而去除。然而,相对于非产甲烷菌而言,产甲烷菌对温度、pH、氧化还原电位(ORP)、碱度及有毒物质等均很敏感,各种生态因子的生态幅均较窄,对生态因子的要求更加苛刻。所以当系统中温度、pH、ORP等生态因子或有机负荷剧烈变化时,产甲烷菌的活性会受到一定程度抑制,而非产甲烷菌活性所受的影响较小,其产生的VFA不能全部被产甲烷菌利用,使得厌氧体系内VFA大量积累,两大类细菌的代谢平衡被破坏。因而温度、pH、ORP、有机负荷等条件均导致厌氧酸化现象的产生。废水厌氧生物处理是环境工程与能源工程中的一项重要技术,是有机废水强有力的处理方法之一。黑龙江塞流式厌氧罐报价表

UASB厌氧反应器污泥床技术成熟,成功案例多。海南上流式厌氧罐原理

IC厌氧反应器的控制参数主要有几点:污泥菌种。厌氧污泥中具有处理污染物能力的就是细菌等有机物质,菌群的组成及菌种的成分决定了其颗粒强度、产甲烷活性及对污水的适应能力。一般来说,厌氧颗粒污泥中有机物成分占70%左右,污泥外部菌种主要为丝菌,污泥内部主要为杆菌、球菌等。PH值。反应器进水PH值一般应控制在6.5~7.5之间,过高或过低的pH值都会对工艺造成影响,主要体现在对厌氧菌(主要是产甲烷菌)活性的影响,包括:①影响菌体及酶系统的生理功能和活性②影响环境的氧化还原电位③影响基质的活性。产甲烷菌的这些性质功能遭到破坏后,处理COD的活性就会多多降低。海南上流式厌氧罐原理

信息来源于互联网 本站不为信息真实性负责