市政污水厌氧塔多大

时间:2022年08月21日 来源:

以IC反应器为例,对于产甲烷活性正常的厌氧污泥来说,通常污泥负荷的较佳范围为0.2-0.4kgSCOD/kgVS.d,较大的污泥负荷则不宜高于0.55kgSCOD/kgVS.d,当然不同的行业,不同的水质,其较佳和较大的负荷范围会有所差异。如果在厌氧反应器进行生物启动之前,能确定所需处理的废水水量及相应的废水SCOD浓度,明白了上述污泥负荷的概念,就可以通过上述计算公式,选择合适的污泥负荷并计算出所需接种的厌氧污泥量了。 另外需要注意的是,如果采用厌氧颗粒污泥接种,通过泵送接种后,有少量颗粒污泥会破碎,在随后的生物启动中会从厌氧反应器中流失,根据经验,流失的量约为接种量的5%左右。在核算厌氧污泥接种量时,有必要将这部分流失量考虑进去。厌氧消化技术在世界各地较广应用,大部分处理城市生活有机垃圾的工厂处理量在2500吨/年以上。市政污水厌氧塔多大

厌氧反应器的运行控制要点:上升流速, 反应器的上升流速一般在4~8m/h, 当污水的进水COD 值浓度较低时,需要提高流量来增加COD 的负荷率。较高的上升流速会有助于颗粒污泥与有机物之间的传质过程,避免混合不均匀对设备的影响。预酸化度,废水进入厌氧反应器之前要保持足够的预酸化度,一般在30%~50%之间,很好是在40%左右。预酸化度高的情况下,VFA高,进水pH值会降低,为调解pH值,会增高污水处理的运行费用,同时还会影响污泥的颗粒化。有毒物质,对厌氧颗粒污泥有抑制性作用的毒性物质,主要是H2S和亚硫酸盐。H2S 的允许浓度为小于250 mg /L,否则可能会使大部分产甲烷菌降低50%的活性。亚硫酸盐的毒性比H2S更高,建议将亚硫酸盐的浓度控制在150ppm以下,所以,一定要严格控制这两种有毒物质的含量,对其进行定期检测。市政污水厌氧塔多大厌氧反应器优点:节省基建投资和占地面积。

凡是对厌氧生化反应器有运行经验的人都知道,污泥发生酸化后,会对反应器的运行效率带来严重的不良影响,如果不及时采取适当的调整措施,任由污泥继续酸化,甚至可能导致厌氧污泥产甲烷能力的完全丧失,从而导致反应器失效的严重后果。所以,防止厌氧反应器出现污泥酸化对于厌氧生化系统的运行人员来说是一个非常重要的任务。厌氧反应器优点:全自动运行,可无人值守;处理高纤维含量污水不易堵塞,不易积累;抗冲击能力强,抗毒性强;碱耗少,运行成本低;占地少,处理能力强;双层模块,减少漏气跑泥风险;运行稳定,抗冲击能力强;可靠性高,无需日常检修;去除效率高;启动速度快。

厌氧反应器用途:厌氧反应,是借助微生物在无氧状态下,将有机污染物COD转化为沼气CH4的工艺,厌氧反应器较多应用于食品、饮料、发酵、造纸、垃圾渗滤液等轻工行业。IC厌氧反应器具有处理负荷高,占地面积小,抗冲击能力强,运行稳定,可靠性高等优点。厌氧反应器结构:进水经过布水器输入反应器,与下降管循环来的污泥和水均匀混和后,进入首先一个反应区,即流化床反应室。在那里,大部分COD被降解为沼气,在这个反应区产生的沼气由一级三相分离器收集和分离,并产生气体提升。气体被提升的同时,带动水和污泥作向上运动,经过上升管达到位于反应器顶部的气体/液体分离器,在这里沼气从水和污泥中分离,离开整个反应器。水和污泥混和经过同心的下降管直接滑落到反应器底部形成内部循环流。首先一级反应区的出水在第二阶段深度净化反应室内被深度处理,在那里剩余的可厌氧生物降解的COD被去除,在上层分离区产生的沼气被顶部的二级三相分离器收集,并由集气管输送到顶部旋流式气体/液体分离器,实现沼气分离和收集。同时,厌氧出水经过出水堰离开反应器自流进入后续处理中。厌氧反应器在进行运行之前,我们要做好冲水实验,也要做好基础的气密性试验。

厌氧反应器优点:抗冲击负荷能力强。由于反应器实现了内循环,处理低浓度水(如啤酒废水)时,循环流量可达进水流量的 2 ~ 3 倍;处理高浓度水(如土豆加工废水)时,循环流量可达进水流量的10~20倍。因为循环流量与进水在反应室充分混合,使原废水中的有害物质得到充分稀释,降低了有害程度,并可防止局部酸化发生,从而提高了反应器的耐冲击负荷的能力。出水的稳定性好。反应器的、二反应室,相当于上下两个反应器,它们串联运行,反应室有很高的有机容积负荷率,相当于起“粗”处理作用,第二反应室则具有较低的有机容积负荷率,相当于起“精”处理作用。整个 反应器实际上是两级厌氧处理。一般情况下,两级厌氧处理比单级厌氧处理的稳定性好,出水也较稳定。IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:深度净化室。uasb厌氧罐三项分离器

为了保证一定的水流和产气上升速度,厌氧反应器不能太深。市政污水厌氧塔多大

厌氧反应的阶段:水解阶段,目的:高分子有机物转化为小分子有机物。因为高分子有机物的分子质量相对巨大,不能透过细胞膜,就不可能被细菌直接利用。因此,它们在首先一阶段,就被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌利用。酸化阶段,目的:上一阶段产生的小分子有机物转化为挥发酸。在这一阶段,上述小分子的化合物在发酵细菌(即酸化菌)的细胞内,转化为更为简单的化合物并分泌到细胞外。这一阶段的主要产物有,挥发性脂肪酸(VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未充分酸化的废水,在厌氧处理时会产生更多的剩余污泥。市政污水厌氧塔多大

信息来源于互联网 本站不为信息真实性负责