低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务

时间:2024年05月17日 来源:

岩石中流体的扩散受到周围固体介质的限制,是一种受限扩散,其扩散系数、弛豫时间与岩石孔隙结构和表面性质有很大的关系,岩心流体中自旋核磁矩弛豫与扩散机理,对深入了解低渗透岩石孔隙结构和渗流特征有很大帮助.同时,岩心中表面润湿性与核磁共振参数的关系是润湿性研究的基础。岩心中弛豫时间测量基本的规律是:与孔壁表面接触越紧密,流体的弛豫时间越短.由于分子无规则热运动引起分子与孔壁的碰撞进而产生表面弛豫作用,孔径中的扩散和弛豫时间有非常紧密地联系.水泥基材料-土壤-岩芯等多孔介质弛豫分析技术可获得物质中与分子动力学特性相关的弛豫信号。低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务

低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务,水泥基材料-土壤-岩芯等多孔介质

水泥基材料是一种非常复杂的材料。 未水化的水泥以晶体矿物为主,但水化后的水泥基材料既含有晶态的钙矾石、氢氧化钙及未水化的水泥矿物,又有C-S-H凝胶及其它非晶态相,且水化产物以非晶态物质为主。同时其结构中既含有固态物质,又有液态的孔溶液及气孔。由于水泥基材料组份和结构的复杂性,大部分的现代测试分析方法在研究水泥水化及其它过程时所能得到的信号不清晰(X射线衍射为典型),而核磁共振技术无此方面限制,它可表征水分在水泥基材料中的分布及传输,极大地促进水泥基材料的研究。低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务水泥基材料-土壤-岩芯等多孔介质分析仪紧扣科研前沿:采用第36届世界混凝土大会推荐硬件参数配置。

低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务,水泥基材料-土壤-岩芯等多孔介质

润湿性

自吸:已饱油岩样放入吸水仪中,如果岩石亲水,毛细作用下,水将自动吸入岩石将岩石中的油驱替出来,驱替出的油浮于仪器顶部,体积能够直接读出;如果岩石有亲油能力,则使用饱水岩样,置入油中,倒置读出驱出水量;由于岩石具有非均质性,既亲油又亲水,一般同一岩样重复做吸水驱油和吸油驱水实验;自吸离心法:除自吸外,利用离心机产生离心力将岩心毛管中可流动的液体排除,得到总的可流动毛管体积:水排比=自动吸水量/(自动吸水量+离心吸水(排油)量);油排比=自动吸油量/(自动吸油量+离心吸油(排水)量);自吸驱替法:与自吸离心法相似,不同在于将离心机旋转产生的离心力改为将岩心装入岩心夹持器中加压进行驱替;实验步骤:饱油(含束缚水)岩样自吸水,测排油量C,岩心放入夹持器,水驱油测油量D;水驱后(含残余油)自吸油,测排水量A,岩心放入夹持器,油驱水测水量B。油润湿指数=A/(A+B)水润湿指数=C/(C+D)

通过不同含水量土壤在静置不同时间后的一维弛豫时间分析,可推断:水分进入土壤后,将立即渗透至不受约束的有机质中,形成凝胶相,不受约束矿物颗粒(粘土)的微孔中,这一过程很短。然而随着水分的进入,土壤的组分单元将与水分产生相互作用,如水分渗透进有机质与矿物颗粒的结合界面,从而阻断之间的氢键连接、离子键连接、共价键连接等,甚至还伴随着水解作用的产生,随着这些约束的破坏,其产物如分离出的有机质和矿物颗粒进一步吸水,从而终达到水分传输分布的平衡状态,反推,当如土壤失水干燥时,伴随着凝胶相失水坍塌、有机质与矿物质在界面作用下,重新分型聚集,封闭微孔等。这可有效表征土壤在吸水/失水过程中微观结构的变化,对土壤中水分的迁移、水分子动力学研究等提供依据,同时,这一微孔打开/封闭的过程,将极有可能使污染物在土壤中聚集,从而形成土壤污染。T2弛豫时间反演谱图累加值,可有效用于土壤总体含水量的测量,开展土壤持水能力的研究。核磁共振磁场的温度稳定性限制了磁体的使用环境。永磁体的磁场强度主要受限于磁体材料。

低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务,水泥基材料-土壤-岩芯等多孔介质

计算机断层扫描成像技术(CT):根据CT技术扫描岩芯样品得到的断面图像进行高精度微米纳米尺度上的计算机三维建模,建立页岩的孔隙几何、矿物分布、吼道分布、渗透率、流体渗流通道等属性模型,被称为数字岩芯技术。受限于样品规格、图像识别分辨率、复杂算法,以及且数据处理耗时耗力。

岩芯核磁共振检测:低场核磁共振(NMR)方法以测试样品规格多样(块样,柱样,全直径岩芯均可)、测试速度快、获取岩芯物性信息丰富、对样品无损害等优势在砂岩、煤岩、碳酸盐岩、致密砂岩、页岩等油气资源勘探开发领域得到了***的发展和应用。低场核磁共振技术已被广泛应用于储层实验评价研究的各个方面,如孔隙度、孔径分布、核磁渗透率、孔隙结构、润湿性、气水相互作用、束缚流体与可动流体识别、油气水识别、伪毛细管压力曲线转换、残余油分布、流体可视化研究、甲烷等温吸附曲线、高温高压驱替等等。 非常规岩芯磁共振分析仪可测0.02毫升水样,误差±0.5%,并可对气体,如甲烷等,可直接测量。时域磁共振水泥基材料-土壤-岩芯等多孔介质应用领域

非常规岩芯分析仪具有高性能驱替系统,及大围压1万psi,及大驱替压8千psi,最高温度120℃。低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务

低场时域核磁共振技术用于水分在土壤中的运动机制研究: 土壤是一种具有复杂成分的多孔介质系统,包括粘土(伊利石、高岭石、蒙脱石等)、有机质(腐殖酸、酯等)等,其在吸水后,由于部分成分发生相态变化、各个成分之间的相互作用等,致使其水分先进入相对较大的孔隙,而进入微孔则是一个比较长的过程,这与具有稳定结构的多孔介质中水分的运动机制相反(典型多孔介质极先吸水的是微孔),这种现象可通过低场时域核磁共振技术持续检测土壤样品中的水分的弛豫时间明显的观察到。 从T2反演谱图上可以看出,随着时间的推移,大孔中的水(约1000ms)的含量逐渐减少(谱峰面积逐渐减小),小孔中的水(约2.5ms)逐渐增加(谱峰面积逐渐增大)。同时,随着时间的推移,所有谱峰的位置逐渐左移,这说明,水分与土壤中的部分成分发生作用,使土壤的孔径大小发生变化,重新分布。 MAGMED-Soil-2260磁共振土壤分析仪,能够精确、全力的采集土壤样品中所有孔径对应的弛豫时间信号,优化的软硬件配置,满足长时间在线测量要求,重复性好,为土壤中的水分运动机制研究提供一种精确、快速、方便的分析途径。低场时域核磁共振水泥基材料-土壤-岩芯等多孔介质检测服务

信息来源于互联网 本站不为信息真实性负责