多系统适配目标跟踪应用

时间:2024年03月19日 来源:

我国幅员辽阔,拥有漫长的边防海岸线,而边防海岸线的防卫是安全的重要一道屏障。近几年,卫生事件、国际形势的多变,更加加重了边防海岸线的防卫形势。目前重要的地方均建立了哨所,安装了监控系统,外加必要的人员巡逻,但是因为监控面大,无疑增加了人的的工作量,而且传统的监控系统普遍还处在只“监”不“控”的被动状态,出现了紧急事情后,大多只具备事后取证的功能,对于发生的可疑和异常行为无法起到预防、预警的功能。监控系统如果能够加入智能分析、自动跟踪、自动报警等功能,那么能有效的解决该问题,帮助安防人员能够更有效的发现问题同时很大程度的发挥监控系统其应有的监控能力。为了响应相关行业的迫切需求,成都慧视光电技术有限公司运用自身的图像算法和硬件平台开发优势,推出了系列国产化图像检测与跟踪板卡、全国产化RK3399PRO处理板、全国产化RV1126处理板等产品,全国产化RK3399PRO处理板因为其强大的硬件平台叠加基于行为的算法,能够有效的应对边防海岸线的迫切需求。稳定的跟踪算法哪家好?多系统适配目标跟踪应用

目标跟踪

成都慧视光电技术有限公司的RK3399处理板是采用的国内AI智能开发板OrangePI4,植入慧视光电自主研发的智能图像算法,基于输入的可见光或者红外的视频流,可实时对目标进行自主检测、识别或者手动锁定,同时可以根据输出目标的靶量信息,对目标进行实时跟踪。双光测温组件是基于RK3399图像处理板,推出的一款用于高温人群体温筛查的组件产品。基于该组件,可快速展开各类用户终端产品的集成设计。其中可见光模组和红外测温模组,分别通过配套提供的FFC软排线与RK3399图像处理板连接。无线目标跟踪产品慧视光电基于AI图像处理的监控监管方案能够实现安全生产。

多系统适配目标跟踪应用,目标跟踪

在信息化、数字化、智能化浪潮下,对于城市管理相关部门而言,要解决城市空间管理中存在的数据资源利用率低等问题,可以建立可统一管理的平台,并进一步以此平台为基础,充分挖掘各部门及各空间场景的结构化及非结构化数据价值,通过深度学习、计算机视觉、知识图谱等人工智能技术,科学、高效地利用城市数据资产来实现城市空间全域感知与实时预警,使各相关部门能够对所辖区域发生的异常状态或事件迅速做出反应。在平台端数据资源不断积累的支持下,人工智能算法模块也将随之持续优化迭代,在大数据局的牵头下进行各部门业务的职能协同,为城市管理提供辅助决策与分析预测等智能服务。

目标遮挡是导致跟踪失败的一个重要原因,也是实现长程目标跟踪的关键问题。跟踪任务从始至终都只跟踪一个目标,一旦目标被遮挡,则会极大程度上影响跟踪准确度,甚至导致跟踪失败。因此,当面临遮挡问题时,目标跟踪任务的要求更加严格。目前,目标遮挡可以分为两种情况:部分遮挡和完全遮挡。部分遮挡意味着在图像中还存在部分目标,可以通过对这部分的目标进行判断进而确定目标的位置;完全遮挡则是在图像中找不到目标,可能发生在有大的物体完全遮住了跟踪目标。慧视光电的图像处理板具有抗遮挡能力。成都慧视光电技术有限公司推出基于全国产化RK3399PRO板的高性能图像处理板卡。

多系统适配目标跟踪应用,目标跟踪

中台的概念出自于互联网领域,中台即是数字能力共享平台,是平台的平台。城市管理者可通过建立城市空间管理中台,实现城市数据资产的统一管理。以人工智能技术为主的AI中台还能够较好的解决城市空间管理面临的数据“深度”使用的问题。AI中台是将深度学习、计算机视觉、知识图谱、自然语言理解等人工智能技术模块化、组件化、可插拔化并赋能于中台,将人工智能能力(包括硬件的计算能力、算法的训练能力、模型的部署能力、基础业务的展现能力)集约起来,与中台的数据资源紧密结合并封装为整体中台系统。慧视RK3399板卡可以用于大型公共停车场。耐用目标跟踪功能

有没有做全国产后跟踪版的公司?多系统适配目标跟踪应用

成都慧视光电技术有限公司推出的国产化图像检测与跟踪智能处理板——RV1126处理模块,具有以下特点①处理模块使用瑞芯微的RV1126芯片,RV1126是一个高性能、低功耗的视觉处理SOC,具有丰富的外设和功能特性,尤其适合AI相关的应用;②4核CortexA7,每个核具有独自的NEON和FPU,每个核具有32KB的一级数据缓存和一级指令缓存,4核共用512KBL2缓存;③两个MIPICSI/LVDS/SubLVDS视频输入接口,每个接口支持4lane,MIPICSI每个lane的比较大速率为2.5Gbps/lane,LVDS比较大速率为1Gbps/lane;④ISP支持的最大分辨率为4416x3312;⑤支持H264,H265视频编码,比较大支持4096x2304@30fps;⑥神经处理单元(NPU),运算能力达到2Tops,支持INT8和INT16;⑦包含一个RISCV微控制器多系统适配目标跟踪应用

信息来源于互联网 本站不为信息真实性负责