无源目标跟踪联系方式

时间:2024年05月14日 来源:

近年来,伴随着大数据时代的来临,深度学习在计算机视觉的许多问题,如图像识别、人脸识别、目标检测领域都取得了巨大成功,与传统的目标检测算法相比,深度学习算法具有更好的表达能力、更高的准确性,深度神经网络在模型架构和学习过程上与人类认识和感知世界的神经系统类似。目标检测和识别现在是视觉方向热门的研究课题,也一直是工业界重点研究的对象。近几年,业内出现了各种各样的检测框架,不断刷新各种性能指标,然而受限于工业应用的性能与成本要求,效率-精度平衡的检测框架成为了优先。团队在该方向进行了一系列的优化设计,创建了全新的移动端实时检测框架,与其他流行的检测框架相比,该模型架构在准确性和延迟之间实现了更好的权衡,基于选用的硬件平台,可以实现性能优良的移动端实时物体检测。慧视AI图像处理板是高精度识别的板卡。无源目标跟踪联系方式

目标跟踪

视频监控中的多目标跟踪(MTT)是一项重要而富有挑战性的任务,由于其在各个领域的潜在应用而引起了研究人员的大量关注。多目标跟踪任务需要在每帧中单独定位目标,这仍然是一个巨大的挑战,因为目标的外观会立即发生变化,并且会出现极端的遮挡。除此之外,多目标跟踪框架需要执行多个任务,即目标检测、轨迹估计、帧间关联和重新识别。多目标跟踪分为目标检测和跟踪两个主要任务。为了区分组内对象,MTT算法将ID与在特定时间内保持特定于该对象的每个检测到的对象相关联。然后利用这些ID来生成被跟踪对象的运动轨迹。比较好的目标跟踪好选择慧视光电开发的慧视RV1126图像处理板,采用了国产高性能CPU。

无源目标跟踪联系方式,目标跟踪

很多跟踪方法都是对通用目标的跟踪,没有目标的类别先验。在实际应用中,还有一个重要的跟踪是特定物体的跟踪,比如人脸跟踪、手势跟踪和人体跟踪等。特定物体的跟踪与前面介绍的方法不同,它更多地依赖对物体训练特定的检测器。人脸跟踪由于它的明显特征,它的跟踪就主要由检测来实现,比如早期的Viola-Jones检测框架和当前利用深度学习的人脸检测或人脸特征点检测模型。手势跟踪在应用主要集中在跟踪特定的手型,比如跟踪手掌或者拳头。设定特定的手型可以方便地训练手掌或拳头的检测器。

目标跟踪是计算机视觉研究领域的热点之一,并得到广泛应用。相机的跟踪对焦、无人机的自动目标跟踪等都需要用到了目标跟踪技术。另外还有特定物体的跟踪,比如人体跟踪,交通监控系统中的车辆跟踪,人脸跟踪和智能交互系统中的手势跟踪等。简单来说,目标跟踪就是在连续的视频序列中,建立所要跟踪物体的位置关系,得到物体完整的运动轨迹。给定图像首帧的目标坐标位置,计算在下一帧图像中目标的确切位置。在运动的过程中,目标可能会呈现一些图像上的变化,比如姿态或形状的变化、尺度的变化、背景遮挡或光线亮度的变化等。目标跟踪算法的研究也围绕着解决这些变化和具体的应用展开。慧视RV1126图像跟踪板支持目标跟踪识别目标(人、车)。

无源目标跟踪联系方式,目标跟踪

目标跟踪是计算机视觉的一个重要分支,其利用视频或图像序列的上下文信息,对目标的外观和运动信息进行建模,从而对目标运动状态进行预测并标定目标的位置。目标跟踪融合了图像处理、机器学习、比较好化等多个领域的理论和算法,是完成更高层级的图像理解(如目标行为识别)任务的前提和基础。随着计算机处理能力的飞速提升,各种基于目标跟踪的民用和***系统纷纷落地,广泛应用于智能视频监控、智能人机交互、智能交通、视觉导航、无人驾驶、无人自主飞行、战场态势侦察等领域。并结合多传感器技术,提高了对城市的主动监视和对战场的态势感知能力。能够实现多目标跟踪并完成对目标行为的异常检测。开发出了能在复杂场景下的行人跟踪和行为理解,以及可用于监测、引导交通流量并实现异常预警的公共交通管理系统。工程师以RV1126核心板为基础进行定制开发,让摄像头更加智能高效,能够输出高清流的图像视频。陕西目标跟踪技术

慧视RV1126图像处理板能实现24小时、无间隙信息化监控。无源目标跟踪联系方式

在目标跟踪领域,场景信息与目标状态的融合十分重要,首先,场景信息包含了丰富的环境上下文信息,对场景信息进行分析及充分利用,能够有效地获取场景的先验知识,降低复杂的背景环境以及场景中与目标相似的物体的干扰;同样地,对目标的准确描述有助于提升检测与跟踪算法的准确性与鲁棒性.总之,尝试研究结合背景信息和前景目标信息的分析方法,融合场景信息与目标状态,将有助于提高算法的实用性能。慧视光电开发的图像处理板,具备高性能、高精度的特点,能够进行精确的目标跟踪。无源目标跟踪联系方式

信息来源于互联网 本站不为信息真实性负责