湖南高效目标跟踪

时间:2024年06月27日 来源:

视频自动跟踪系统,一般都是用在露天的、较大地域范围的监控系统中,且边跟踪边录像。在自动跟踪系统的发展上,jun用上的视频自动跟踪、毫米波雷达跟踪以及激光雷达跟踪等是比较成熟的;非jun用领域,存在一些固定画面、摄像机从不运动的的目标检测与跟踪系统;基于带红外线的、常用在演播室或者会议室的、很近距离的跟踪系统,目前主要局限于简单背景(如室内环境下)、大目标(即目标在视频图像中占较大区域),而且一般无法实现控制摄像机转动来对目标进行跟踪。RV1126搭载AI智能算法,实现目标识别与跟踪。湖南高效目标跟踪

目标跟踪

用检测器模型去解决跟踪问题,遇到的比较大问题是训练数据不足。普通的检测任务中,因为检测物体的类别是已知的,可以收集大量数据来训练。例如 VOC、COCO 等检测数据集,都有着上万张图片用于训练。而如果我们将跟踪视为一个特殊的检测任务,检测物体的类别是由用户在首先帧的时候所指定的。这意味着能够用来训练的数据只是只是只有少数几张图片。这给检测器带来了很大的障碍。而慧视光电定制的目标跟踪算法可以有效的解决这个问题,通过AI自动图像标注平台SpeedDP的大量模型部署训练,能够有效解决数据训练不足的问题。甘肃目标跟踪互惠互利RK2588搭载AI智能算法,实现目标识别与跟踪。

湖南高效目标跟踪,目标跟踪

无人驾驶汽车是计算机视觉技术应用的重要领域。在自动驾驶过程中,通过对车道线、前后方车辆和行人等目标的准确识别,为更高级的行为选择、障碍物规避以及路径规划功能提供了基础,这其中的一项关键技术就是目标跟踪。由于实际路况极为复杂,基于传统目标检测的辅助驾驶技术性能难以得到大幅提升。随着技术的发展,采用深度学习可以直接学习和感知路面和道路上车辆的特征,经过一段时间的正确驾驶过程,便能学习和感知实际道路情况下的相关驾驶技能,无需再通过感知具体的路况和各种目标,大幅提升了辅助驾驶算法的性能。

视觉跟踪技术是计算机视觉领域(人工智能分支)的一个重要课题,有着重要的研究意义;且在导弹制导、视频监控、机器人视觉导航、人机交互、以及医疗诊断等许多方面有着广泛的应用前景。随着研究人员不断地深入研究,视觉目标跟踪在近十几年里有了突破性的进展,使得视觉跟踪算法不只是局限于传统的机器学习方法,更是结合了近些年人工智能热潮—深度学习(神经网络)和相关滤波器等方法,并取得了鲁棒(robust)、精确、稳定的结果。慧视RV1126图像处理板能实现24小时、无间隙信息化监控。

湖南高效目标跟踪,目标跟踪

目标跟踪是在首帧中给定待跟踪目标的情况下,对目标进行特征提取,对感兴趣区域进行分析;然后在后续图像中找到相似的特征和感兴趣区域,并对目标在下一帧中的位置进行预测。作为计算机视觉领域的一个热点研究方向,目标跟踪一直都是一项具有挑战性的工作。目标跟踪技术在导弹制导、智能监控系统、视频检索、无人驾驶、人机交互和工业机器人等领域具有重要的作用。从上世纪50年代目标跟踪的起源到现今,尽管已有大量的研究成果,但是在复杂条件下实现实时准确的跟踪依旧难以实现。成都RV1126智能跟踪板提供商。多系统适配目标跟踪批发商

成都慧视光电技术有限公司推出基于全国产化RK3588板的高性能图像跟踪板卡。湖南高效目标跟踪

另外,经典的跟踪方法还有基于特征点的光流跟踪,在目标上提取一些特征点,然后在下一帧计算这些特征点的光流匹配点,统计得到目标的位置。在跟踪的过程中,需要不断补充新的特征点,删除置信度不佳的特征点,以此来适应目标在运动中的形状变化。本质上可以认为光流跟踪属于用特征点的来表征目标模型的方法。在深度学习和相关滤波的跟踪方法出现后,经典的跟踪方法都被舍弃,这主要是因为这些经典方法无法处理和适应复杂的跟踪变化,它们的鲁棒性和准确度都被前沿的算法所超越,但是,了解它们对理解跟踪过程是有必要的,有些方法在工程上仍然有十分重要的应用,常常被当作一种重要的辅助手段。湖南高效目标跟踪

信息来源于互联网 本站不为信息真实性负责