四川网格絮凝池供应

时间:2022年10月10日 来源:

给水处理中澄清工艺通常包括混凝、沉淀和过滤,处理对象主要是水中悬浮物和胶体杂质。原水加药后,经混凝使水中悬浮物和胶体形成大颗粒絮凝体,而后通过沉淀池进行重力分离。网格(栅格)絮凝池就是混凝、絮凝沉淀两种功能的净水构筑物。希望达到以下目的:1、通过对有机玻璃装置直接地观察,加深对组成的各个部分的了解;2、掌握网格(栅格)絮凝池水流方向和操作使用方法,观察絮体生成和沉淀的状况。二、网格(栅格)絮凝池主要技术指标及参数:1、环境温度:5℃~40℃2、处理水量:40L/h、3、装置外形总尺寸:长×宽×高=1100mm×400mm×1500mm4、工作电源:AC220V±10%、50Hz,单相三线制,功率200W,安全保护:具有接地保护、漏电保护、过流保护指的是在沿流程一定距离的过水断面中设置栅条或网格,通过栅条或网格的能量消耗完成絮凝过程的构筑物。四川网格絮凝池供应

云南省个旧市松矿水厂,位于甲界山工业园区内,工程设计服务范围为个旧市大屯镇及综合片区、鸡街、沙甸片区。水源为松矿1 360矿坑地下承压水,于2006年开工建设,2007年建成并投入使用。水厂设计供水规模为2.4万 m3/d,采用常规处理工艺:1 306矿坑原水→穿孔旋流絮凝池→斜管沉淀池→重力无阀滤池→清水池→二级提升泵房→后山高位水池→居民用户及企事业单位。松矿水厂占地约9 700 m2,水厂现状已建混合池1座,穿孔旋流斜管沉淀池8组,重力无阀滤池8组,单组设计处理水量为3 000 m3/d。四川网格絮凝池供应反应絮凝池及斜管沉淀池计算。

污水的絮凝过程是在絮凝池中进行的。絮凝池的目的就是创造合适的水力条件使这种具有絮凝性能的颗粒在相互接触中聚集,以形成较大的絮凝体(絮粒)。因此,絮凝池设计是否确当,关系到絮凝的效果,而絮凝的效果又直接影响后续处理的沉淀效果。絮凝效果的好坏取决于两个因素:一是絮凝剂水解后产生的高分子化合物形成吸附桥架的连接能力,这是由混凝剂的性质决定的。二是微小颗粒接触碰撞的机率如何控制它们进行合理有效的碰撞,这是由设备的动力学条件决定的。

网格絮凝池,指的是在沿流程一定距离的过水断面中设置网格,通过网格的能量消耗完成絮凝过程的构筑物。网格絮凝池是近年来应用紊流理论发展起来的新型絮凝池,其平面布置与穿孔旋流絮凝池相似,由多格竖井串联而成,可同平流沉淀池或斜管斜板沉淀池合建。网格絮凝池的优点是水头损失小、絮凝时间较短、效果较好。絮凝格栅是能造成尾流区大的扰流装置,可加大压强阻力,充分提高水流能量利用率,从而进一步提高絮凝效果。水流在同波折板间曲折流动或在异波之间缩、放流动且连续不断,以至形成众多的小涡流,提高了颗粒碰撞絮凝效果。在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚成絮凝体,然后予以分离除去的水处理法。

根据微涡流絮凝池的理论,加入涡流反应器的目的就是为了增加网格。因此,本工程将以涡流反应器的设计原理及其结构特点作为改造设计的基础,考虑利用Fluent软件对其在絮凝池内的流态进行模拟。涡流反应器表面开孔孔径可考虑为网格的格栅大小,其壁厚可考虑为栅板的厚度,现状水厂内的微涡流絮凝池是由穿孔旋流絮凝池改造而成的,可考虑将其简化为穿孔旋流网格絮凝池作为模拟对象。涡流反应器的结构特点主要是以下3个方面。(1)空心球形状,内外表面打毛,直径由工艺确定。(2)根据工艺确定球形表面小孔直径和开孔比。(3)采用塑料材料,添加少量增强吸附性的原料,容重略大于水,壁厚由结构强度设计确定。絮凝格栅是能造成尾流区大的扰流装置,可加大压强阻力。内蒙古本地网格絮凝池联系人

网格絮凝池在净水中的应用。四川网格絮凝池供应

实践证明,高效沉淀池能够实现污水处理厂深度水质处理,促进水质达到一级A排放标准,并将水体中的污染物浓度有效降低,、改善水体环境。当然,人们在应用过程中需要对运行参数进行科学分析和设置,对药剂量的使用、设备维护保养等进行到位的管理,发挥高效沉淀池的比较大功能。高效沉淀池不仅可以实现微污染水的深度处理,还可以应用在工业废水预处理中,从而改善水质环境,提升污水处理效果,进而促进中水回用和污泥焚烧项目的开展,实现更大的经济效益和环境效益。四川网格絮凝池供应

四川昕辰环保材料有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在四川省等地区的环保中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来四川昕辰环保材料供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!

信息来源于互联网 本站不为信息真实性负责