湖北自主可控声学回声设计

时间:2023年02月05日 来源:

    TWS耳机异音,底噪,回声测试难点,TWS耳机市场一直在迅猛发展和壮大,逐步提升在整个耳机市场中的份额,无论是坐公交,乘地铁,漫步,还是居家娱乐,都能看到TWS耳机的魅影。换个角度讲,TWS耳机正在融入人们的生活。与此同时,习惯了TWS的用户对于TWS耳机也有着更高的要求,比如音质,降噪,更好的无线连接,防水,续航,轻便,舒适等。近期市场调查反馈得知,消费者普遍把音质作为选购TWS耳机的首要指标。其中消费者直观感受到的几项指标,在生产环节又容易忽略及不易测试出来的。测试员在听音时因工厂环境原因也难以分辨出来,但在实际使用过程中又很容易发现的不良,造成客户投诉及批量退货。这就是异(常)音,底噪和回声问题。下面我们基于这三者的表象,原因以及测量方法做些介绍。一、耳机异(常)音异(常)音泛指耳机喇叭漏气、杂音、振音等非正常音。其产生原因大概有以下几项:1、喇叭音圈问题,如变形、散线、未对齐、尾部卷起大振幅时音圈碰擦到T铁或华司等。2、喇叭磁隙问题,有摩擦或松散微粒。3、喇叭振膜问题,脱胶,喇叭振膜边缘与钢架胶粘处分离,或振膜表面破损。4、耳机电气及悬挂系统的缺陷,导致干扰附加音。异常音之所以难测试。

     非线性声学回声消除的技术难点。湖北自主可控声学回声设计

    需要注意的是,如果index在滤波器阶数两端疯狂试探,只能说明当前给到线性部分的远近端延时较小或过大,此时滤波器效果是不稳定的,需要借助固定延时调整或大延时调整使index处于一个比较理想的位置。线性部分算法是可以看作是一个固定步长的NLMS算法,具体细节大家可以结合源码走读,本节重点讲解线型滤波在整个框架中的作用。从个人理解来看,线性部分的目的就是很大程度的消除线性回声,为远近端帧判别的时候,很大程度地保证了信号之间的相干值(0~1之间,值越大相干性越大)的可靠性。我们记消除线性回声之后的信号为估计的回声信号e(n),e(n)=s(n)+y''(n)+v(n),其中y''(n)为非线性回声信号,记y'(n)为线性回声,y(n)=y'(n)+y''(n)。相干性的计算(Matlab代码),两个实验(1)计算近端信号d(n)与远端参考信号x(n)的相关性cohdx,理论上远端回声信号的相干性应该更接近0(为了方便后续对比,WebRTC做了反向处理:1-cohdx),如图5(a),行为计算近端信号d(n),第二行为远端参考信号x(n),第三行为二者相干性曲线:1-cohdx,会发现回声部分相干值有明显起伏,比较大值有,近端部分整体接近,但是有持续波动,如果想通过一条固定的门限去区分远近端帧,会存在不同程度的误判。

     陕西无限声学回声介绍非线性声学回声消除技术。

    再次回授、无限循环而产生反馈现象,而系统在均衡声场后,该现象其实是可以得到明显改观的。但话筒的拾音灵敏度是不是可以无限大呢?不是,在足够电平条件下,它始终会因拾取到具有相干性频率相位关系的输入信号而建立起回授。上述啸叫现象并不是本文重点,但它为我们讨论接下来的话题提供了一个前提,那就是(同一个声场环境中)话筒和音箱无论怎么摆都无法做到完全的隔离,更别说空间声场条件有限的小中型会议室了。在一套有扩声、有拾音的远程会议系统中,为了防止信号回授,我们通常会有意识地将远端输入信号不再路由给远端输出。然而无法抗拒的是,本地话筒因拾取到远端传送至本地扩声的信号,仍可将声音重新传送至远端。这也是一种回授,明显的远程回授现象可使得系统发生自激震荡。通过一个简易的远程音频传输,能帮助我们更容易地理解声音信号是怎样的流向。也能够更清楚地看到这里面可能存在的回授现象。部分工程师在调试远程会议系统时也许遇到过啸叫,那可不一定是本地系统没调好所造成的,你会发现,关掉终端一切非常正常。为什么绝大多数的远程系统没有啸叫呢?这还得感谢您还不算非常质量的网络。我们常说,距离产生延时。

  

    如果设置nlp_mode=kAecNlpAggressive,α大约会在30左右。如果当前帧为近端帧(即echo_state=false),假设第k个频带hNl(k)=,hNl(k)=hNl(k)^α=,即使滤波后的损失听感上几乎无感知。如图8(a),hNl经过α调制之后,幅值依然很接近。如果当前帧为远端帧(即echo_state=true),假设第k个频带hNl(k)=,hNl(k)=hNl(k)^α=,滤波后远端能量小到基本听不到了。如图8(b),hNl经过α调制之后,基本接近0。经过如上对比,为了保证经过调制之后近端期望信号失真小,远端回声可以被抑制到不可听,WebRTCAEC才在远近端帧状态判断的的模块中设置了如此严格的门限。另外,调整系数α过于严格的情况下会带来双讲的抑制,如图9第1行,近端说话人声音明显丢失,通过调整α后得以恢复,如第2行所示。因此如果在WebRTCAEC现有策略上优化α估计,可以缓解双讲抑制严重的问题。延时调整策略回声消除的效果与远近端数据延时强相关,调整不当会带来算法不可用的风险。在远近端数据进入线性部分之前,一定要保证延时在设计的滤波器阶数范围内,不然延时过大超出了线性滤波器估计的范围或调整过当导致远近端非因果都会造成无法收敛的回声。先科普两个问题:。1)为什么会存在延时?首先近端信号d。

   不上系统传递函数变化的速度,就会导致声学回声消除不理想。

    男人说话的声频为~150Hz,女人说话声频为~230Hz,发动机声频为~250Hz,绝大部分机器的噪音也是以低频为主的中低频噪音),9.声音频率(声频)声波在单位时间内的振动次数称为频率(frequency),单位赫(Hz)。人耳能够听到的声音的整个范围是20~20000Hz,一般把声音频率分为低频(500Hz以下)、中频(500-1000Hz)和高频(1000Hz以上)三个频带。听觉好的成年人能听到的声音频率常在30~16000Hz之间,老年人则常在50~10000Hz之间。10.混响声源停止发音后,产生的声音延续现象。11.混响时间当声场达到稳定的状态后,突然关掉声源使其停止发声,声能逐渐减小到原来声能(稳定时具有的声能)的百万分之一所经历的时间,通常用声压级60dB所需要的时间,一般用T60表示(有时也用T),单位为秒(S);(简而言之:声能密度衰减60dB所需要的时间)。12.混响时间计算公式塞宾公式T60=αS。其中A为总吸声量,α为吸声系数,S为样件面积,V为混响室体积。13.比较好混响时间对大量音质效果评价认为较好的各种用途的厅堂实测的500HZ和1000HZ满场(指实际使用状态)的混响时间进行统计分析,从而得到的混响时间称为比较好混响时间。14.直达声与混响声声源发出的直接到达的声音是直达声。

     便于大家对双耦合声学回声消除算法有一个定性的认识。吉林无限声学回声是什么

声学回声是由于麦克风和扬声器的声学泄露耦合而成。湖北自主可控声学回声设计

    n)中的回声是扬声器播放远端参考x(n),又被麦克风采集到的形成的,也就意味着在近端数据还未采集进来之前,远端数据缓冲区中已经躺着N帧x(n)了,这个天然的延时可以约等于音频信号从准备渲染到被麦克风采集到的时间,不同设备这个延时是不等的。苹果设备延时较小,基本在120ms左右,Android设备普遍在200ms左右,低端机型上会有300ms左右甚至以上。(2)远近端非因果为什么会导致回声?从(1)中可以认为,正常情况下当前帧近端信号为了找到与之对齐的远端信号,必须在远端缓冲区沿着写指针向前查找。如果此时设备采集丢数据,远端数据会迅速消耗,导致新来的近端帧在向前查找时,已经找不到与之对齐的远端参考帧了,会导致后续各模块工作异常。如图10(a)表示正常延时情况,(b)表示非因果。WebRTCAEC中的延时调整策略关键而且复杂,涉及到固定延时调整,大延时检测,以及线性滤波器延时估计。三者的关系如下:①固定延时调整只会发生在开始AEC算法开始处理之前,而且调整一次。如会议盒子等固定的硬件设备延时基本是固定的,可以通过直接减去固定的延时的方法缩小延时估计范围,使之快速来到滤波器覆盖的延时范围之内。下面结合代码来看看固定延时的调整过程。

    湖北自主可控声学回声设计

深圳鱼亮科技有限公司是以提供智能家居,语音识别算法,机器人交互系统,降噪为主的有限责任公司(自然),公司位于龙华街道清华社区建设东路青年创业园B栋3层12号,成立于2017-11-03,迄今已经成长为通信产品行业内同类型企业的佼佼者。公司承担并建设完成通信产品多项重点项目,取得了明显的社会和经济效益。多年来,已经为我国通信产品行业生产、经济等的发展做出了重要贡献。

信息来源于互联网 本站不为信息真实性负责