海南安卓语音识别
直接调用即可开启语音识别功能。RunASR函数代码如下:用户说完话后,LD3320通过打分的方式,将关键词列表中特征**相似的一个作为输出。然后LD3320会产生一个中断信号,此时MCU跳入中断函数读取C5寄存器的值,该值即为识别结果,得到结果后,用户可以根据数值来实现一些功能,比如读取到1,说明是“播放音乐”,那么可以调用前面的PlaySound函数来播放音乐。语音识别控制的关键点在于语音识别的准确率。表1给出了测试结果,当然也可以在识别列表中加入更多的关键词来做测试。通过测试结果可以看出,LD3320的识别率在95%上,能够满足用户需求。4结语本文讨论了基于AVR单片机的语音识别系统设计的可行性,并给出了设计方案。通过多次测试结果表明,本系统具有电路运行稳定,语音识别率高,成本低等优点。同时借助于LD3320的MP3播放功能,该系统具有一定的交互性和娱乐性。移植性方面,系统通过简单的修改,可以很方便地将LD3320驱动程序移植到各种嵌入式系统中。随着人们对人工智能功能的需求,语音识别技术将越来越受到人们的关注,相信不久的将来,语音识别将会拥有更广阔的应用。多人语音识别和离线语音识别也是当前需要重点解决的问题。海南安卓语音识别
Bothlent(⻥亮)是专注于提供AI⼯程化的平台,旨在汇聚⼀批跨⾏业的专业前列⼈才,为⼴⼤AI⾏业B端客户、IT从业者、在校⼤学⽣提供⼯程化加速⽅案、教育培训和咨询等服务。⻥亮科技关注语⾳识别、⼈⼯智能、机器学习等前沿科技,致⼒打造国内⼀流AI技术服务商品牌。公司秉承“价值驱动连接、连接创造价值”的理念,重品牌,产品发布以来迅速在市场上崛起,市场占有率不断攀升,并快速取得包括科⼤讯⻜、国芯、FireFly等平台及技术社区在内的渠道合作。未来,我们将进一步加大投入智能识别、大数据、云计算、AI工业4.0前沿技术,融合智慧城市、智慧社区、养老服务等应用组合模式,缔造AI智能机器人服务新时代。海南安卓语音识别一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。
特别是在Encoder层,将传统的RNN完全用Attention替代,从而在机器翻译任务上取得了更优的结果,引起了极大关注。随后,研究人员把Transformer应用到端到端语音识别系统中,也取得了非常明显的改进效果。另外,生成式对抗网络(GenerativeAdversarialNetwork,GAN)是近年来无监督学习方面具前景的一种新颖的深度学习模型,"GenerativeAdversarialNets",文中提出了一个通过对抗过程估计生成模型框架的全新方法。通过对抗学习,GAN可用于提升语音识别的噪声鲁棒性。GAN网络在无监督学习方面展现出了较大的研究潜质和较好的应用前景。从一个更高的角度来看待语音识别的研究历程,从HMM到GMM,到DNN,再到CTC和Attention,这个演进过程的主线是如何利用一个网络模型实现对声学模型层面更准的刻画。换言之,就是不断尝试更好的建模方式以取代基于统计的建模方式。在2010年以前,语音识别行业水平普遍还停留在80%的准确率以下。机器学习相关模型算法的应用和计算机性能的增强,带来了语音识别准确率的大幅提升。到2015年,识别准确率就达到了90%以上。谷歌公司在2013年时,识别准确率还只有77%,然而到2017年5月时,基于谷歌深度学习的英语语音识别错误率已经降低到。
一直推崇的是Chain模型。该模型是一种类似于CTC的技术,建模单元相比于传统的状态要更粗颗粒一些,只有两个状态,一个状态是CDPhone,另一个是CDPhone的空白,训练方法采用的是Lattice-FreeMMI训练。该模型结构可以采用低帧率的方式进行解码,解码帧率为传统神经网络声学模型的三分之一,而准确率相比于传统模型有非常的提升。远场语音识别技术主要解决真实场景下舒适距离内人机任务对话和服务的问题,是2015年以后开始兴起的技术。由于远场语音识别解决了复杂环境下的识别问题,在智能家居、智能汽车、智能会议、智能安防等实际场景中获得了广泛应用。目前国内远场语音识别的技术框架以前端信号处理和后端语音识别为主,前端利用麦克风阵列做去混响、波束形成等信号处理,以让语音更清晰,然后送入后端的语音识别引擎进行识别。语音识别另外两个技术部分:语言模型和解码器,目前来看并没有太大的技术变化。语言模型主流还是基于传统的N-Gram方法,虽然目前也有神经网络的语言模型的研究,但在实用中主要还是更多用于后处理纠错。解码器的指标是速度,业界大部分都是按照静态解码的方式进行,即将声学模型和语言模型构造成WFST网络。该网络包含了所有可能路径。
语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。
MarkGales和SteveYoung在2007年对HMM在语音识别中的应用做了详细阐述。随着统计模型的成功应用,HMM开始了对语音识别数十年的统治,直到现今仍被看作是领域内的主流技术。在DARPA的语音研究计划的资助下,又诞生了一批的语音识别系统,其中包括李开复()在卡耐基梅隆大学攻读博士学位时开发的SPHINX系统。该系统也是基于统计模型的非特定说话人连续语音识别系统,其采用了如下技术:①用HMM对语音状态的转移概率建模;②用高斯混合模型(GaussianMixtureModel,GMM)对语音状态的观察值概率建模。这种把上述二者相结合的方法,称为高斯混合模型-隐马尔可夫模型(GaussianMixtureModel-HiddenMarkovModel,GMM-HMM)[9]。在深度学习热潮出现之前,GMM-HMM一直是语音识别主流的技术。值得注意的是,在20世纪80年代末,随着分布式知识表达和反向传播算法(Backpropagation,BP)的提出,解决了非线性学习问题,于是关于神经网络的研究兴起,人工神经网络(ArtificialNeuralNetwork,ANN)被应用到语音领域并且掀起了一定的热潮。这是具有里程碑意义的事件。它为若干年后深度学习在语音识别中的崛起奠定了一定的基础。但是由于人工神经网络其自身的缺陷还未得到完全解决。大数据与深度神经网络时代的到来,语音识别技术取得了突飞猛进的进步。海南安卓语音识别
远场语音识别已经随着智能音箱的兴起成为全球消费电子领域应用为成功的技术之一。海南安卓语音识别
语音识别包括两个阶段:训练和识别。不管是训练还是识别,都必须对输入语音预处理和特征提取。训练阶段所做的具体工作是收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,通过特征建模达到建立训练语音的参考模型库的目的。而识别阶段所做的主要工作是将输入语音的特征矢量参数和参考模型库中的参考模型进行相似性度量比较,然后把相似性高的输入特征矢量作为识别结果输出。这样,终就达到了语音识别的目的。语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过学习,达到较高的识别率。基于现有技术开发嵌入式语音交互系统,目前主要有两种方式:一种是直接在嵌入式处理器中调用语音开发包;另一种是嵌入式处理器外扩展语音芯片。第一种方法程序量大,计算复杂,需要占用大量的处理器资源,开发周期长;第二种方法相对简单,只需要关注语音芯片的接口部分与微处理器相连,结构简单,搭建方便,微处理器的计算负担降低,增强了可靠性,缩短了开发周期。本文的语音识别模块是以嵌入式微处理器为说明。海南安卓语音识别
深圳鱼亮科技有限公司是一家从事智能家居,语音识别算法,机器人交互系统,降噪研发、生产、销售及售后的服务型企业。公司坐落在龙华街道清华社区建设东路青年创业园B栋3层12号,成立于2017-11-03。公司通过创新型可持续发展为重心理念,以客户满意为重要标准。Bothlent目前推出了智能家居,语音识别算法,机器人交互系统,降噪等多款产品,已经和行业内多家企业建立合作伙伴关系,目前产品已经应用于多个领域。我们坚持技术创新,把握市场关键需求,以重心技术能力,助力通信产品发展。我们以客户的需求为基础,在产品设计和研发上面苦下功夫,一份份的不懈努力和付出,打造了Bothlent产品。我们从用户角度,对每一款产品进行多方面分析,对每一款产品都精心设计、精心制作和严格检验。深圳鱼亮科技有限公司以市场为导向,以创新为动力。不断提升管理水平及智能家居,语音识别算法,机器人交互系统,降噪产品质量。本公司以良好的商品品质、诚信的经营理念期待您的到来!