江苏电子类语音关键事件检测是什么
在本申请的示例性实施例中,在通过双向lstm网络获得语句的向量化语义表示w1之前,所述方法还可以包括:将语句中的m个字符随机初始化为一个维度为[m,n]的n维向量d,其中,对于从0到m-1的索引id,每个id对应一个不同的字符;对于长度为s的语句,该语句中每一个字符能够在向量d中找到对应的id,从而获得维度为[s,d]的向量。在本申请的示例性实施例中,通过双向lstm网络获得语句的向量化语义表示w1可以包括:将维度为[s,d]的向量输入预设的双向lstm神经网络,将所述双向lstm神经网络的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,通过bert模型获得语句的向量化语义表示w1可以包括:将语句直接输入所述bert模型,将所述bert模型的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,所述向量化语义表示w1的维度可以为[s,d1];其中,当通过双向lstm网络获得语句的向量化语义表示w1时,d1为2*lstm隐层节点数;当通过bert模型获得语句的向量化语义表示w1时,d1=768。在本申请的示例性实施例中,所述方法还可以包括:预先将触发词的类型划分为x种,将事件主体的类型划分为y种,其中,x、y均为正整数;在获得语句的向量化语义表示w1之前。语音关键事件检测技术怎么样?江苏电子类语音关键事件检测是什么
便可以得到一个第二样本图像组及样本图像组的事件检测结果。实施例三:上述步骤f2,基于场景图像检测模型输出的检测结果,确定关于目标防护舱的事件检测结果,可以包括以下步骤f21-f23:步骤f21:将至少包含光流图在内的第二类图像确定为辅助图像,第二类图像中各个图像的类型均为:基于每两帧连续的关于所述目标防护舱且包括所述目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图;步骤f22:将辅助图像输入到预设的光流图检测模型中,得到光流图检测模型输出的检测结果;其中,光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中的图像与待分析图像的图像数据相同,各个第二样本图像组中的图像为:关于防护舱的光流图;步骤f23:将场景图像检测模型输出的检测结果和光流图检测模型输出的检测结果进行融合计算,基于融合计算的结果,确定关于目标防护舱的事件检测结果。也就是说,在本实施例三中,可以同时利用场景图像检测模型对类图像进行检测,得到一个检测结果,利用光流图检测模型对第二类图像进行检测,得到另一个检测结果,进而,将两个检测结果进行融合计算,并基于融合计算的结果。福建无限语音关键事件检测特征语音关键事件检测在机关单位的使用。
每种类型与某一数字对应,以便于计算机的处理,则可以分别标记为[0,1,2,3,4,...,29,30]。在本申请的示例性实施例中,因计算机无法直接处理中文,因此可以将句子(语句)中每一个单词转化为数字的映射。即,获得语句的向量化语义表示w1。在本申请的示例性实施例中,所述获得语句的向量化语义表示w1可以包括:通过双向lstm网络模型或bert模型获得语句的向量化语义表示w1。在本申请的示例性实施例中,在通过双向lstm网络获得语句的向量化语义表示w1之前,所述方法还可以包括:将语句中的m个字符随机初始化为一个维度为[m,n]的n维向量d,其中,对于从0到m-1的索引id,每个id对应一个不同的字符;对于长度为s的语句,该语句中每一个字符能够在向量d中找到对应的id,从而获得维度为[s,d]的向量。在本申请的示例性实施例中,通过双向lstm网络获得语句的向量化语义表示w1可以包括:将维度为[s,d]的向量输入预设的双向lstm神经网络,将所述双向lstm神经网络的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,假设语料中一共有20000个不同的字符(汉字和/或单词,可以包括其他常用符号),每个字符可以随机初始化为一个300维的向量,则可以得到一个维度为[20000。
虽然用户进入了目标防护舱,但是用户并没有在目标防护舱内停留,而是立刻离开了目标防护舱,又或者,在某个时刻,用户从目标防护舱前路过,而在此刻采集到的关于目标防护舱的图像恰好拍摄到用户投射到防护舱门上的影子。显然,在上述这些时刻,虽然电子设备获取的当前帧图像中存在目标对象,但是,电子设备可以确定在这些时刻目标防护舱内不会发生针对该目标对象所在的用户的异常事件,进而,不需要对这些时刻获取的关于目标防护舱的图像执行后续步骤s303-s304。因此,为了进一步节省电子设备的资源,减轻电子设备的运行负担,同时也为了避免误报,电子设备可以通过多种方式来确定执行步骤s303的条件。一种具体实现方式中,如图4所示,在上述步骤s303,基于当前帧图像,确定待分析图像之前,上述本发明实施例提供的一种事件检测方法还可以包括:s302a:判断当前帧图像和当前帧图像之前的连续预设数量帧图像,是否均包含目标对象,如果是,执行上述步骤s303。在本实现方式中,在获取到当前帧图像后,电子设备便可以利用图像识别算法判断当前帧图像和当前帧图像之前的连续预设数量帧图像,是否均包含目标对象。其中,当判断结果为是时。语音关键事件检测一般设置在哪些地方?
便可以极大地减少监控人员在查看视频时所耗费的时间。另一种具体实现方式中,上述本发明实施例提供的一种事件检测方法还可以包括如下步骤c2:步骤c2:在关于目标防护舱的监控视频中,为当前帧图像添加第二标签,其中,第二标签包括:所发生异常事件类型对应的类型标签。当用于采集关于目标防护舱的图像的图像采集设备和用于对目标防护舱进行监控的摄像头为同一设备时,电子设备实时获取的关于目标防护舱的图像即为关于目标防护舱的监控视频中的每个视频帧。这样,当电子设备确定当前时刻目标防护舱内出现的异常事件的类型后,便可以通过第二标签对当前帧图像进行标记,该第二标签中包括:当前时刻目标防护舱内出现的异常事件的类型的类型标签。这样,当监控人员需要查看目标防护舱的监控视频中与该异常事件对应的视频内容时,便可以直接通过异常事件的类型标签,在监控视频的进度条上查找该类型标签对应的视频帧的录制时间。进一步的,监控人员便可以根据所查找到的时间,直接调取与该时间对应的监控视频的视频内容。这样,便可以极大地减少监控人员在查看视频时所耗费的时间。以上可见,应用本发明实施例提供的方案,实时获取目标防护舱的图像。语音关键事件检测有哪些关键技术?江苏电子类语音关键事件检测是什么
语音关键事件检测的设备有哪些?江苏电子类语音关键事件检测是什么
这样,电子设备在每获取到一帧图像时,便可以利用该帧图像和该帧图像的前一帧图像,得到该帧图像对应的光流图。进一步的,在本实现方式中,上述步骤s303,基于当前帧图像,确定待分析图像,便可以包括如下步骤e1:步骤e1:将至少包含光流图在内的第二类图像确定为待分析图像,其中,第二类图像中各个图像均为:基于每两帧连续的关于目标防护舱且包括目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图。由于电子设备实时获取的关于目标防护舱的图像均为目标图像采集设备所采集的、能够反映目标防护舱的内部空间在每个时刻的真实情况的图像,而光流图是基于这些关于目标防护舱的图像中人物的运动变化情况获得的,因此,电子设备可以将光流图确定为待分析图像。从而,利用待分析图像,确定当前时刻,关于目标防护舱的事件检测结果。其中,为了描述简单,可以将当前帧图像的光流图简称为光流图。其中,由于本发明实施例是对目标防护舱内的用户是否处于正常情况中进行检测,因此,第二类图像中的各个光流图应该是关于目标防护舱中用户运动情况的光流图。进一步的,由于每帧光流图是通过连续两帧图像获取到的,因此,在本实现方式中。江苏电子类语音关键事件检测是什么
深圳鱼亮科技有限公司是一家集生产科研、加工、销售为一体的****,公司成立于2017-11-03,位于龙华街道清华社区建设东路青年创业园B栋3层12号。公司诚实守信,真诚为客户提供服务。公司业务不断丰富,主要经营的业务包括:智能家居,语音识别算法,机器人交互系统,降噪等多系列产品和服务。可以根据客户需求开发出多种不同功能的产品,深受客户的好评。Bothlent严格按照行业标准进行生产研发,产品在按照行业标准测试完成后,通过质检部门检测后推出。我们通过全新的管理模式和周到的服务,用心服务于客户。深圳鱼亮科技有限公司依托多年来完善的服务经验、良好的服务队伍、完善的服务网络和强大的合作伙伴,目前已经得到通信产品行业内客户认可和支持,并赢得长期合作伙伴的信赖。
上一篇: 四川移动语音关键事件检测哪里买
下一篇: 浙江自主可控麦克风阵列