湖南未来麦克风阵列哪里买

时间:2023年03月17日 来源:

    还有个重要的虚警率指标,稍微有点声音就乱识别也不行,另外还要考虑阈值的影响,这都是麦克风阵列技术中的陷阱。麦克风阵列的关键技术消费级的麦克风阵列主要面临环境噪声、房间混响、人声叠加、模型噪声、阵列结构等问题,若使用到语音识别场景,还要考虑针对语音识别的优化和匹配等问题。为了解决上述问题,特别是在消费领域的垂直场景应用环境中,关键技术就显得尤为重要。噪声抑制:语音识别倒不需要完全去除噪声,相对来说通话系统中需要的技术则是噪声去除。这里说的噪声一般指环境噪声,比如空调噪声,这类噪声通常不具有空间指向性,能量也不是特别大,不会掩盖正常的语音,只是影响了语音的清晰度和可懂度。这种方法不适合强噪声环境下的处理,但是应付日常场景的语音交互足够了。混响消除:混响在语音识别中是个蛮讨厌的因素,混响去除的效果很大程度影响了语音识别的效果。我们知道,当声源停止发声后,声波在房间内要经过多次反射和吸收,似乎若干个声波混合持续一段时间,这种现象叫做混响。混响会严重影响语音信号处理,比如互相关函数或者波束主瓣,降低测向精度。回声抵消:严格来说,这里不应该叫回声,应该叫“自噪声”。回声是混响的延伸概念。麦克风阵列拓扑结构按麦克风阵列的维数,可分为一维、二维和三维麦克风阵列。湖南未来麦克风阵列哪里买

    这两者的区别就是回声的时延更长。一般来说,超过100毫秒时延的混响,人类能够明显区分出,似乎一个声音同时出现了两次,我们就叫做回声,比如天坛着名的回声壁。实际上,这里所指的是语音交互设备自己发出的声音,比如Echo音箱,当播放歌曲的时候若叫Alexa,这时候麦克风阵列实际上采集了正在播放的音乐和用户所叫的Alexa声音,显然语音识别无法识别这两类声音。回声抵消就是要去掉其中的音乐信息而只保留用户的人声,之所以叫回声抵消,只是延续大家的习惯而已,其实是不恰当的。声源测向:这里没有用声源定位,测向和定位是不太一样的,而消费级麦克风阵列做到测向就可以了,没必要在这方面投入太多成本。声源测向的主要作用就是侦测到与之对话人类的声音以便后续的波束形成。声源测向可以基于能量方法,也可以基于谱估计,阵列也常用TDOA技术。声源测向一般在语音唤醒阶段实现,VAD技术其实就可以包含到这个范畴,也是未来功耗降低的关键研究内容。波束形成:波束形成是通用的信号处理方法,这里是指将一定几何结构排列的麦克风阵列的各麦克风输出信号经过处理(例如加权、时延、求和等)形成空间指向性的方法。波束形成主要是抑制主瓣以外的声音干扰,这里也包括人声。北京麦克风阵列是什么根据麦克风阵列的拓扑结构,则可分为线性阵列、平面阵列、体阵列等。

    提取出每个麦克风所对应的音频信号、……;(3)将声源空间划分成多个网格,并依次求网格上每一个点的功率(,功率大的点即是声源定位的点=(;(4)任意一个点的总功率()为是麦克风阵列上所有麦克风对的信号两两做基于相位变换的广义互相关并求和:()=其中k、l第k、l个麦克风,表示相位变换的权重,τ()表示从声音从位置x到达第k个麦克风的时间;式中将定义为组合加权函数:考虑到计算()所涉及的对称性,并去掉一些固定能量项,则()随x变化的部分为:=(5)在整个房间内进行全局搜索,利用随机区域收缩算法(src)得到能量大的坐标点y;在所给定的初始值中随机找出一个n维的矩阵,在顺序过程中,逐步缩小范围,直到达到足够小的范围,找出峰值;从而计算出定位坐标点。步骤(4)中,为了简化计算可以替换为:=步骤(5)中,所述随机区域收缩算法的过程如下:1)先定义i为迭代的次数,表示第i次迭代时随机抽取的点数,表示下一代的子搜索空间中包含的点数,表示下一代子搜索空间。定义每计算一次便记为一次,表示第i次迭代后的次数,表示停止值,φ表示大被允许计算的次数。表示新的子搜索空间的边界;2)初始化迭代次数i=0;3)设置初始参数:、,;4)计算中所有的值。

    比如几个人围绕Echo谈话的时候,Echo只会识别其中一个人的声音。阵列增益:这个比较容易理解,主要是解决拾音距离的问题,若信号较小,语音识别同样不能保证,通过阵列处理可以适当加大语音信号的能量。模型匹配:这个主要是和语音识别以及语义理解进行匹配,语音交互是一个完整的信号链,从麦克风阵列开始的语音流不可能割裂的存在,必然需要模型匹配在一起。实际上,效果较好的语音交互麦克风阵列,通常是两套算法,一套内嵌于硬件实时处理,另外一套服务于云端匹配语音处理。由8个MIC组成的麦克风阵列麦克风阵列的技术趋势语音信号其实是不好处理的,我们知道信号处理大多基于平稳信号的假设,但是语音信号的特征参数均是随时间而变化的,是典型的非平稳态过程。幸运的是语音信号在一个较短时间内的特性相对稳定(语音分帧),因而可以将其看作是一个准稳态过程,也就是说语音信号具有短时平稳的特性,这才能用主流信号处理方法对其处理。从这点来看,麦克风阵列的基本原理和模型方面就存在较大的局限,也包括声学的非线性处理(现在基本忽略非线性效应),因此基础研究的突破才是未来的根本。另外一个趋势就是麦克风阵列的小型化,麦克风阵列受制于半波长理论的限制。复杂的麦克风阵列主要应用于工业和**领域,消费领域考虑到成本会简化很多。

    语音转写产品虽然能很好的识别单目标声源的人声并进行转写,但是一旦出现竞争性声源,则无法辨别目标声源,竞争声源的存在导致对目标声源的识别便产生紊乱,无法进行语音到文字的转写和翻译。技术实现要素:为了解决现有同声翻译设备中存在的竞争性声源中辨别目标声源困难、设备体积过大不易携带的问题,本发明提供一种基于麦克风阵列的智能语音转文字及同声翻译系统,其可以智能识别目标声源,去除或降低竞争性噪声,对目标声源进行语音增强后进行语音到文字的转写和翻译,且设备体积较小容易携带。本发明的技术方案是这样的:一种基于麦克风阵列的智能语音转文字及同声翻译系统,其包括:声音采集模块、音频转换模块、语音增强模块、翻译模块;所述声音采集模块智能地选取目标声源,将数据送入所述音频转换模块,进行模拟语音数据和数字语音数据之间的转换;所述语音增强模块通过数字信号处理器向所述音频转换模块中的音频编解码芯片发送控制信号,将所述音频转换模块传输过来的语音信号进行处理及其控制语音信号的传输;处理过的数字语音信号送入所述翻译模块,按照用户选择的目标语言进行实时翻译。麦克风阵列还是物理入口,只是完成了物理世界的声音信号处理,得到了语音识别想要的声音。内蒙古自主可控麦克风阵列特征

立体阵列麦克风(3-DMicrophoneArray)真正实现全空间360度无损拾音解决了平面阵高俯仰角信号响应差的问题。湖南未来麦克风阵列哪里买

    麦克风越多越容易实现更好的降噪和语音增果,所以为了达到同样或者类似的效果,双麦克阵列技术相对多麦克阵列的技术挑战性更高。但因为成本问题,采用双麦克阵列的技术挑战虽然大,但从应用普及的角度上却是大势所趋。另外,从效果上看,如果技术优化足够好,在3~5米的家庭环境中,双麦克阵列虽然可以和多麦克阵列做到几乎一样的降噪和语音增果。但双麦克有个缺点,就是声源定位只能定位180°内的范围,而环形麦克风阵列(不管是4Mic、6Mic还是8Mic)都可以做到360°全角度范围内的定位。所以GoogleHome只能有四个LED灯来显示状态,而AmazonEcho可以用LED灯显示说话人的方向。当然,这个差别对具有声源定位需求的产品存在影响,而且对一些本来就需要靠墙摆放的设备如空调、电视机等是没有任何问题的。而对于类似机器人等摆放在室内的产品,如果希望它能定位说话人位置,那就只能采用多麦克方案了。后,从产品的角度,双麦克方案简单更易落地。多麦克阵列大的问题是,无论线性阵列还是环形阵列,其对产品的外观、结构设计都有极为严苛的要求,因为麦克风是要求必须在空间上均匀分布的。而双麦克显然就不必考虑这些因素。湖南未来麦克风阵列哪里买

深圳鱼亮科技有限公司是一家集研发、制造、销售为一体的****,公司位于龙华街道清华社区建设东路青年创业园B栋3层12号,成立于2017-11-03。公司秉承着技术研发、客户优先的原则,为国内智能家居,语音识别算法,机器人交互系统,降噪的产品发展添砖加瓦。在孜孜不倦的奋斗下,公司产品业务越来越广。目前主要经营有智能家居,语音识别算法,机器人交互系统,降噪等产品,并多次以通信产品行业标准、客户需求定制多款多元化的产品。Bothlent为用户提供真诚、贴心的售前、售后服务,产品价格实惠。公司秉承为社会做贡献、为用户做服务的经营理念,致力向社会和用户提供满意的产品和服务。深圳鱼亮科技有限公司以市场为导向,以创新为动力。不断提升管理水平及智能家居,语音识别算法,机器人交互系统,降噪产品质量。本公司以良好的商品品质、诚信的经营理念期待您的到来!

信息来源于互联网 本站不为信息真实性负责