浙江电子类语音关键事件检测特征

时间:2023年03月18日 来源:

    与所述控制器通信连接,适于在接收到所述控制器输出的告警指令时执行告警操作;所述告警装置由救生人员佩戴或设置在游泳场馆中。可选的,所述溺水事件检测装置还包括:m个第二摄像头,均与所述控制器耦接,设置在所述游泳池水面的上方,且在垂直方向上与所述游泳池水面的距离大于所述预设值;所述m个第二摄像头适于从上向下采集所述游泳池内的图像。可选的,所述n个摄像头均匀分布在所述游泳池壁上。可选的,在水平方向上,所述n个摄像头均设置在所述游泳池水面上方。可选的,在水平方向上,所述n个摄像头均设置在所述游泳池水面下方。可选的,在水平方向上,所述n个摄像头中的一部分均设置在所述游泳池水面上方,另一部分均设置在所述游泳池水面下方。可选的,所述预设值为0~50厘米。可选的,所述m个第二摄像头设置在游泳池水面上方2~5米。可选的,所述n个摄像头与所述控制器无线通信连接,所述m个第二摄像头与所述控制器无线通信连接。可选的,所述告警装置包括以下至少一种:智能手环、智能手机、广播台。与现有技术相比,本实用新型的技术方案具有以下优点:通过n个摄像头实时采集图像,控制器可以实时获取n个摄像头采集到的图像。语音关键事件检测图片。浙江电子类语音关键事件检测特征

    用于基于当前帧图像,确定待分析图像,其中,待分析图像为:关于目标防护舱及目标对象的图像;结果确定模块640,用于将待分析图像输入到预设的检测模型中,得到关于目标防护舱的事件检测结果;其中,检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。以上可见,应用本发明实施例提供的方案,实时获取目标防护舱的图像,并判断当前时刻所采集到的当前帧图像是否包括目标对象,由于目标对象为:能够表征用户进入目标防护舱的用户身体部位,则可以基于当前帧图像判断当前时刻是否有用户进入目标防护舱。则当判断结果为是时,便可以基于当前帧图像,确定待分析图像,进而将该待分析图像输入到预设的检测模型中,得到关于目标防护舱的事件检测结果。这样,由于检测模型是基于各个样本图像和各个样本图像的事件检测结果所训练得到的模型,因此,检测模型充分学习了样本图像和事件检测结果之间的对应关系。基于此,在本发明实施例中,利用采集到的真实图像来确定待分析图像,利用训练好的检测模型对待分析图像进行检测,便可以提高关于目标防护舱的事件检测结果的准确率。而上述事件检测结果中可以包括目标防护舱内所发生的事件类型。天津量子语音关键事件检测是什么语音关键事件检测的使用步骤指南。

    用于将场景图像检测模型输出的检测结果和光流图检测模型输出的检测结果进行融合计算,基于融合计算的结果,确定关于目标防护舱的事件检测结果。可选的,一种具体实现方式中,上述结果确定单元包括:乘积计算子单元,用于根据场景图像检测模型和光流图检测模型的权重,计算场景图像检测模型输出的检测结果和场景图像检测模型的权重的乘积,并计算光流图检测模型输出的检测结果与光流图检测模型的权重的第二乘积;结果确定子单元,用于计算乘积和第二乘积的和值,基于和值,确定关于目标防护舱的事件监测结果。可选的,一种具体实现方式中,事件检测结果为:关于未发生异常事件的结果,或者,关于发生异常事件且所发生异常事件类型的结果。可选的,一种具体实现方式中,上述装置还包括:事件判断模块,用于当事件检测结果为关于发生异常事件且所发生异常事件类型的结果时,判断目标防护舱当前时刻发生的事件类型是否包括预设类型的事件;如果是,触发报警模块;报警模块,用于生成并发出与预设类型对应的报警信号。可选的,一种具体实现方式中,上述装置还包括:图像截取模块,用于当事件检测结果为关于发生异常事件且所发生异常事件类型的结果时,对当前帧图像进行截图。

    这样,电子设备在每获取到一帧图像时,便可以利用该帧图像和该帧图像的前一帧图像,得到该帧图像对应的光流图。进一步的,在本实现方式中,上述步骤s303,基于当前帧图像,确定待分析图像,便可以包括如下步骤e1:步骤e1:将至少包含光流图在内的第二类图像确定为待分析图像,其中,第二类图像中各个图像均为:基于每两帧连续的关于目标防护舱且包括目标对象的图像获取的光流图,光流图为当前帧图像对应的光流图。由于电子设备实时获取的关于目标防护舱的图像均为目标图像采集设备所采集的、能够反映目标防护舱的内部空间在每个时刻的真实情况的图像,而光流图是基于这些关于目标防护舱的图像中人物的运动变化情况获得的,因此,电子设备可以将光流图确定为待分析图像。从而,利用待分析图像,确定当前时刻,关于目标防护舱的事件检测结果。其中,为了描述简单,可以将当前帧图像的光流图简称为光流图。其中,由于本发明实施例是对目标防护舱内的用户是否处于正常情况中进行检测,因此,第二类图像中的各个光流图应该是关于目标防护舱中用户运动情况的光流图。进一步的,由于每帧光流图是通过连续两帧图像获取到的,因此,在本实现方式中。语音关键事件检测主要应用在哪些领域?

    光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中包括n+1帧光流图。第二种情况:待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像;场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像;辅助图像为:光流图;光流图检测模型为:采用各个第二样本图像和每个第二样本图像的事件检测结果所训练得到的模型,且每个第二样本图像为一帧光流图。第三种情况:待分析图像为:当前帧图像;场景图像检测模型为:采用各个样本图像和每个样本图像的事件检测结果所训练得到的模型,且每个样本图像为一帧场景图像;辅助图像为:包括光流图和光流图之前的连续n帧光流图的多张图像;光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中包括n+1帧光流图。第四种情况:待分析图像为:当前帧图像;场景图像检测模型为:采用各个样本图像和每个样本图像的事件检测结果所训练得到的模型,且每个样本图像为一帧场景图像;辅助图像为:光流图。语音关键事件检测的难点有哪些?浙江电子类语音关键事件检测特征

语音关键事件检测受哪些因素影响?浙江电子类语音关键事件检测特征

    红外线发射器所发射的红外线将被用户身体发射到红外接收器。而当用户倒地后,红外线接收器因为接收不到红外线的反射信号而判断用户出现倒地事件,并发出警报,以使外界救护人员能够及时地进入对用户进行救援。然而,在上述相关方案中,由于红外线发射器和红外线接收器距离地面有一定的高度,因此,当防护舱内用户出现弯腰等情况,身体低于该高度时,红外接收器因为接收到红外信号而判断用户出现倒地事件,产生误报;当身高不足上述高度的用户进入防护舱时,将无法检测到用户进入语音关键事件检测防护舱,进而,当该用户发生倒地事件时,产生漏报。且,该方案无法检测出用户出现剧烈运动。基于此,上述相关方案对防护舱内用户出现异常事件的检测准确率较低。技术实现要素:本发明实施例的目的在于提供一种事件检测、装置及电子设备,以提高对防护舱内用户出现异常事件的检测准确率。具体技术方案如下:方面,本发明实施例提供了一种事件检测方法,所述方法包括:实时获取关于目标防护舱的图像,并将当前时刻所采集到的图像作为当前帧图像;检测所述当前帧图像是否包含目标对象,其中,所述目标对象为:能够表征用户进入所述目标语音关键事件检测防护舱的用户身体部位。浙江电子类语音关键事件检测特征

深圳鱼亮科技有限公司是国内一家多年来专注从事智能家居,语音识别算法,机器人交互系统,降噪的老牌企业。公司位于龙华街道清华社区建设东路青年创业园B栋3层12号,成立于2017-11-03。公司的产品营销网络遍布国内各大市场。公司业务不断丰富,主要经营的业务包括:智能家居,语音识别算法,机器人交互系统,降噪等多系列产品和服务。可以根据客户需求开发出多种不同功能的产品,深受客户的好评。公司秉承以人为本,科技创新,市场先导,和谐共赢的理念,建立一支由智能家居,语音识别算法,机器人交互系统,降噪**组成的顾问团队,由经验丰富的技术人员组成的研发和应用团队。在市场竞争日趋激烈的现在,我们承诺保证智能家居,语音识别算法,机器人交互系统,降噪质量和服务,再创佳绩是我们一直的追求,我们真诚的为客户提供真诚的服务,欢迎各位新老客户来我公司参观指导。

信息来源于互联网 本站不为信息真实性负责