浙江未来麦克风阵列服务标准

时间:2023年03月21日 来源:

    混响是建筑声学中要重点考虑的问题演讲厅要短一些的混响时间,比如北京学术报告厅混响时间为1s交响乐则需要长一些的混响时间,比如上海音乐厅混响时间为,维也纳音乐厅为过大的混响会带来音素的交叠掩蔽现象,严重影响语音识别效果,尤其是远距离语音识别。目前主流采用麦克风阵列+深度学习的方式来进行去混响。线性麦克风阵列加性麦克风阵列(AdditiveMicrophoneArray)阵列的输出是各阵元的加权和优波束方向可调结构简单、方便布局适用于车载、家电等场合差分麦克风阵列(DifferentialMicrophoneArray)阵列的输出是两两麦克风之间的加权相减波束方向只能在末端方向适用于耳机通话等场合平面麦克风阵列平面麦克风阵列(PlanarMicrophoneArray)实现平面360度等效拾音麦克风个数越多,空间划分越精细,语音增强和降噪效果越好用于智能音箱和交互机器人上立体麦克风阵列立体阵列麦克风(3-DMicrophoneArray)真正实现全空间360度无损拾音解决了平面阵高俯仰角信号响应差的问题麦克风阵列发展趋势多传感器的融合。声学麦克风,光学麦克风,骨传导麦克风的多模态降噪。提高信噪比,以及适应不同的环境。分布式麦克风阵列。客厅,卧室,厨房,餐厅,手持各类麦克风的数据实时融合处理。对麦克风阵列频率响应的校准对于室内移动声源定位精度的进一步提升具有重要意义。浙江未来麦克风阵列服务标准

    这两者的区别就是回声的时延更长。一般来说,超过100毫秒时延的混响,人类能够明显区分出,似乎一个声音同时出现了两次,我们就叫做回声,比如天坛着名的回声壁。实际上,这里所指的是语音交互设备自己发出的声音,比如Echo音箱,当播放歌曲的时候若叫Alexa,这时候麦克风阵列实际上采集了正在播放的音乐和用户所叫的Alexa声音,显然语音识别无法识别这两类声音。回声抵消就是要去掉其中的音乐信息而只保留用户的人声,之所以叫回声抵消,只是延续大家的习惯而已,其实是不恰当的。声源测向:这里没有用声源定位,测向和定位是不太一样的,而消费级麦克风阵列做到测向就可以了,没必要在这方面投入太多成本。声源测向的主要作用就是侦测到与之对话人类的声音以便后续的波束形成。声源测向可以基于能量方法,也可以基于谱估计,阵列也常用TDOA技术。声源测向一般在语音唤醒阶段实现,VAD技术其实就可以包含到这个范畴,也是未来功耗降低的关键研究内容。波束形成:波束形成是通用的信号处理方法,这里是指将一定几何结构排列的麦克风阵列的各麦克风输出信号经过处理(例如加权、时延、求和等)形成空间指向性的方法。波束形成主要是抑制主瓣以外的声音干扰,这里也包括人声。内蒙古无限麦克风阵列介绍差分麦克风阵列阵列的输出是两两麦克风之间的加权相减波束方向,只能在末端方向适用于耳机通话等场合。

    本发明涉及室内位置服务领域,具体是一种基于不同麦克风阵列拓扑结构分析的室内声源定位方法。背景技术:语音是人们进行信息交流有效的方式之一。在利用数字音频技术的通信系统中,人们利用麦克风采集语音信号,对语音信号进行处理或存储,以应用于人机交互、视频会议、远程传输等。设是声源与麦克风阵列的距离,是麦克风阵列孔径,是声源的工作波长,则在麦克风近场条件下,即当成立时,麦克风所采集的语音信号可以被认为无噪声干扰的信号,具有较高的话音质量。然而,在很多情况下,这一条件并不满足,如在人机交互、视频会议等场合,说话的人通常处于阵列远场。因此,在阵列远场的情况下,麦克风接收信号中将不可避免地混杂有较强的环境噪声、反射声、方向性干扰等,使拾取的语音信号质量降低。单通道语音无法做到准确的声源定位与,因此声源定位与的算法一般针对多通道语音而言。常用的多通道声源定位技术有三类:1.基于声达时间差的方法,该方法是在较低信噪比和较强混响条件下,现有的时延估计方法误差都较大,此外,这类定位方法适合于单个声源,很难用于多声源定位;2.基于辨谱估计的方法,该方法能做到定向,在精细定位上精度很差。

    麦克风阵列波束形成,是对各阵元的输出进行时延或相位补偿、幅度加权处理,以形成指向特定方向的波束。在远场模型中,假设输入是一个平面波。设传播方向为θ,时域频率(弧度)为ω,声音在介质中的传播速度为c,对于在一个局部均匀的介质里传播的平面波,定义波束k为k=ωsinθ/c=2sinθ/λ,其中λ是对应于频率ω的波长。由于信号到达不同的传感器的时间不同,则阵列接收到的信号可表示为f(t)=[f(t-τ0)f(t-τ1)…f(t-τN-1)]T=[exp(jω(t-kτ0))exp(jω(t-kτ1))…exp(jω(t-kτN-1))]T其中τn为第n个阵元接收到的信号相对于参考点的时延,N为阵元个数,T表示转置。定义v(k)=[e-jωkτ0e-jωkτ1…e-jωkτN-1]T矢量v包含了阵列的空间特征,称为阵列流行矢量。则f(t)可表示为f(t)=ejωtv(k)。阵列处理器对一个平面波的响应为y(t,k)=HT(ω)v(k)ejωt其中H(ω)是滤波器系数向量的傅里叶变换。符号y(t,k)强调了输出和输入波数k的关系。时域上的相关性体现在输出是一个复指数,和输入平面波有相同的频率。在频域上式可表示为Y(ω,k)=HT(ω)v(k)。注意此处ω对应单一的输入频率,所以是窄带的。阵列的空时处理关系完全可以由上式的右端描述,称为阵列的频率-波数响应函数。平面阵列拓扑结构三维麦克风阵列,即立体麦克风阵列,其阵元中心分布在立体空间中。

    还有个重要的虚警率指标,稍微有点声音就乱识别也不行,另外还要考虑阈值的影响,这都是麦克风阵列技术中的陷阱。麦克风阵列的关键技术消费级的麦克风阵列主要面临环境噪声、房间混响、人声叠加、模型噪声、阵列结构等问题,若使用到语音识别场景,还要考虑针对语音识别的优化和匹配等问题。为了解决上述问题,特别是在消费领域的垂直场景应用环境中,关键技术就显得尤为重要。噪声抑制:语音识别倒不需要完全去除噪声,相对来说通话系统中需要的技术则是噪声去除。这里说的噪声一般指环境噪声,比如空调噪声,这类噪声通常不具有空间指向性,能量也不是特别大,不会掩盖正常的语音,只是影响了语音的清晰度和可懂度。这种方法不适合强噪声环境下的处理,但是应付日常场景的语音交互足够了。混响消除:混响在语音识别中是个蛮讨厌的因素,混响去除的效果很大程度影响了语音识别的效果。我们知道,当声源停止发声后,声波在房间内要经过多次反射和吸收,似乎若干个声波混合持续一段时间,这种现象叫做混响。混响会严重影响语音信号处理,比如互相关函数或者波束主瓣,降低测向精度。回声抵消:严格来说,这里不应该叫回声,应该叫“自噪声”。回声是混响的延伸概念。语音信号由麦克风阵列直接获得,再进行分离可以得到多路单一麦克风语音信号。福建信息化麦克风阵列哪里买

目前中远距离声音的获取主要依靠规模较大的麦克风阵列装置来获取。浙江未来麦克风阵列服务标准

    语音转写产品虽然能很好的识别单目标声源的人声并进行转写,但是一旦出现竞争性声源,则无法辨别目标声源,竞争声源的存在导致对目标声源的识别便产生紊乱,无法进行语音到文字的转写和翻译。技术实现要素:为了解决现有同声翻译设备中存在的竞争性声源中辨别目标声源困难、设备体积过大不易携带的问题,本发明提供一种基于麦克风阵列的智能语音转文字及同声翻译系统,其可以智能识别目标声源,去除或降低竞争性噪声,对目标声源进行语音增强后进行语音到文字的转写和翻译,且设备体积较小容易携带。本发明的技术方案是这样的:一种基于麦克风阵列的智能语音转文字及同声翻译系统,其包括:声音采集模块、音频转换模块、语音增强模块、翻译模块;所述声音采集模块智能地选取目标声源,将数据送入所述音频转换模块,进行模拟语音数据和数字语音数据之间的转换;所述语音增强模块通过数字信号处理器向所述音频转换模块中的音频编解码芯片发送控制信号,将所述音频转换模块传输过来的语音信号进行处理及其控制语音信号的传输;处理过的数字语音信号送入所述翻译模块,按照用户选择的目标语言进行实时翻译。浙江未来麦克风阵列服务标准

深圳鱼亮科技有限公司是一家集生产科研、加工、销售为一体的****,公司成立于2017-11-03,位于龙华街道清华社区建设东路青年创业园B栋3层12号。公司诚实守信,真诚为客户提供服务。公司主要经营智能家居,语音识别算法,机器人交互系统,降噪,公司与智能家居,语音识别算法,机器人交互系统,降噪行业内多家研究中心、机构保持合作关系,共同交流、探讨技术更新。通过科学管理、产品研发来提高公司竞争力。公司秉承以人为本,科技创新,市场先导,和谐共赢的理念,建立一支由智能家居,语音识别算法,机器人交互系统,降噪**组成的顾问团队,由经验丰富的技术人员组成的研发和应用团队。深圳鱼亮科技有限公司以诚信为原则,以安全、便利为基础,以优惠价格为智能家居,语音识别算法,机器人交互系统,降噪的客户提供贴心服务,努力赢得客户的认可和支持,欢迎新老客户来我们公司参观。

信息来源于互联网 本站不为信息真实性负责