量子麦克风阵列内容
音频转换模块包括音频解码器和,语音增强模块基于数字信号处理器dsp实现;语音增强模块通过数字信号处理器芯片的i2c接口向音频解码器发送控制信号,通过数字信号处理器芯片的mcasp接口连接音频解码器,交换数字音频信号的数据。语音增强模块中通过预先植入的语音增强算法对音频转换模块传入的声信号进行增强处理;语音增强算法包括以下步骤:s1:定义麦克风阵列中与目标声源s1接近的麦克风为前向麦克风mic1,其采集到的声信号为m1(n),另一个麦克风mic2采集到的声信号为m2(n);对声信号m1(n)、m2(n)进行分帧与加窗之后,再进行时频变换即得到频域信号m1(l,k)和m2(l,k),其中:l和k分别是频率点和时间窗的序号;s2:因为同一个声源的声信号到达两个麦克风mic1、mic2的时间存在延迟,计算延迟系数t(l,k);s3:将延迟系数与目标声源的理想延迟时间δ1进行比较,确定目标声源的能量所占成分;延迟系数t(l,k)的计算方法包括如下步骤:设目标声源存在竞争性语音噪声:干扰噪声源1、干扰噪声源2...干扰噪声源num-1,其中,num取值为自然数;目标声源偏离正向的角度为θ1,θ1的值为0°或非常接近0°。麦克风阵列是由一定数目的麦克风组成。量子麦克风阵列内容
这涉及了语音交互用户场景的变化,当用户从手机切换到类似Echo智能音箱或者机器人的时候,实际上麦克风面临的环境就完全变了,这就如同两个人窃窃私语和大声嘶喊的区别。前几年,语音交互应用为普遍的就是以Siri为的智能手机,这个场景一般都是采用单麦克风系统。单麦克风系统可以在低噪声、无混响、距离声源很近的情况下获得符合语音识别需求的声音信号。但是,若声源距离麦克风距离较远,并且真实环境存在大量的噪声、多径反射和混响,导致拾取信号的质量下降,这会严重影响语音识别率。而且,单麦克风接收的信号,是由多个声源和环境噪声叠加的,很难实现各个声源的分离。这样就无法实现声源定位和分离,这很重要,因为还有一类声音的叠加并非噪声,但是在语音识别中也要抑制,就是人声的干扰,语音识别显然不能同时识别两个以上的声音。显然,当语音交互的场景过渡到以Echo、机器人或者汽车为主要场景的时候,单麦克风的局限就凸显出来。为了解决单麦克风的这些局限性,利用麦克风阵列进行语音处理的方法应时而生。麦克风阵列由一组按一定几何结构(常用线形、环形)摆放的麦克风组成,对采集的不同空间方向的声音信号进行空时处理。浙江移动麦克风阵列服务标准复杂的麦克风阵列主要应用于工业和**领域,消费领域考虑到成本会简化很多。
本实用新型技术提供一种带触摸屏和麦克风阵列的键盘及电子设备,其特征在于:内涵九宫格键盘与触摸屏虚拟键盘和麦克风阵列相结合,触摸屏虚拟键盘上映射数理化特殊符号,以触控方式取代鼠标点击特殊符号表,数理化公式手写识别软件与手写笔配合,在触摸屏上快速输入数理化公式,结合语音识别,实现高效的作业数字化。Keyboardandelectronicequipmentwithtouchscreenandmicrophonearray全部详细技术资料下载【技术实现步骤摘要】一种带触摸屏和麦克风阵列的键盘及电子设备本技术涉及电子设备及其配件,尤指一种带触摸屏和麦克风阵列的键盘及一种电子设备。技术介绍随着人工智能与在线教育的快速发展,AI自动批改作业,生成学生精细的知识图谱,为个性化自适应教学提供基础数据支撑,这将成为新的AI+教学的发展趋势,AI+教学模式有望实现真正的教育公平。作业数字化是AI自适应教学的基础,目前好未来、学霸君、松鼠AI等在线教育公司采用点阵数码笔实现作业数字化,但是点阵数码笔只是将学生手写作业的笔迹转换成数字化轨迹进行记录和保存,还需要通过手写识别软件对轨迹进行识别,才能实现作业数字化。手写笔迹数字化到作业数字化,中间必须经过笔迹识别,由于存在识别错误率。
结果反映阵元间距的推荐择。反映了经以上分析后,以确定的阵列维度、阵元间距及阵元个数进行定位的精度与计算量曲线。(2)阵列自适应滤波校正模块:本例提出的多通道低通滤波与多通道自适应滤波融合的阵列校准方案,作为连接麦克风阵列拓扑结构分析模块与说话人定位算法模块的中间模块,可在确定的阵型上对阵元进行校正,进而提升定位精度。(3)说话人定位算法模块:该模块采用相位变换加权,计算接收信号的可控响应功率。在预先设定的声源空间内,搜索使可控响应功率达到大的坐标,即得到真实声源的位置估计。语音信号由麦克风阵列直接获得,再进行分离可以得到多路单一麦克风语音信号。由于搜索功率大值的过程计算量太大,本系统使用随机区域收缩优化算法找寻峰值。将得到的定位坐标与真实坐标进行对比,再通过这些误差的对比分析不同麦克风阵列的性能。具体步骤如下:1.语音信号的提取,在室内布置合适的麦克风阵列,说话人发声,录下说话人的语音,提取出每个麦克风所对应的音频信号、……。2.可控响应功率定位算法的原理是将声源空间划分成多个网格,并依次求网格上每一个点的功率(,功率大的点即是声源定位的点=(。3.任意一个点的总功率。基于麦克风阵列的室内移动声源定位研究均在麦克风阵列接收信号频率响应保持高度一致性的假设下进行。
在NumLock键锁定时保持原有等号″=″功能,BackSpace键紧邻3*3数字小键盘以便纠错,原键盘字符键排列顺序保持不变;本技术的目的及其技术方案还可采用以下技术措施进一步实现。该键盘由物理键盘+触摸屏虚拟键盘两部分组成,物理键盘在QWERTYUIOP行中,以″O″,在ZXCVBNM行中以2个″M″和″<,″,使三行字符键右边对齐,实现单键区键盘内涵九宫格键盘,数字小键盘映射到内涵九宫格键区上,BackSpace键左边的等号″=″键不叠加复用,在NumLock键锁定时保持原有等号″=″功能,BackSpace键紧邻3*3数字小键盘以方便纠错,原键盘字符键排列顺序保持不变;内涵九宫格优化键盘以单区键盘实现台式机三区键盘的全部功能,节省出桌面空间给电容触摸屏,触摸屏与电容笔或电磁笔配合实现数理化公式手写输入,并经过手写识别软件将手写公式数字化;该键盘内置麦克风阵列,配合语音识别软件实现远场拾音,并具有降噪功能;该键盘的电容触摸屏上有映射希腊字母、符号、几何符号、逻辑符号、数理化特殊符号的虚拟键盘,通过触摸屏虚拟键盘快速输入数理化特殊符号,提升学生作业数字化的输入效率;该键盘的连接方式可以是有线方式连接,也可以是无线方式连接。一维麦克风阵列,即线性麦克风阵列,其阵元中心位于同一条直线上。河北未来麦克风阵列特征
线性麦克风阵列加性麦克风阵列的输出是各阵元的加权和优波束方向。量子麦克风阵列内容
比如几个人围绕Echo谈话的时候,Echo只会识别其中一个人的声音。阵列增益:这个比较容易理解,主要是解决拾音距离的问题,若信号较小,语音识别同样不能保证,通过阵列处理可以适当加大语音信号的能量。模型匹配:这个主要是和语音识别以及语义理解进行匹配,语音交互是一个完整的信号链,从麦克风阵列开始的语音流不可能割裂的存在,必然需要模型匹配在一起。实际上,效果较好的语音交互麦克风阵列,通常是两套算法,一套内嵌于硬件实时处理,另外一套服务于云端匹配语音处理。由8个MIC组成的麦克风阵列麦克风阵列的技术趋势语音信号其实是不好处理的,我们知道信号处理大多基于平稳信号的假设,但是语音信号的特征参数均是随时间而变化的,是典型的非平稳态过程。幸运的是语音信号在一个较短时间内的特性相对稳定(语音分帧),因而可以将其看作是一个准稳态过程,也就是说语音信号具有短时平稳的特性,这才能用主流信号处理方法对其处理。从这点来看,麦克风阵列的基本原理和模型方面就存在较大的局限,也包括声学的非线性处理(现在基本忽略非线性效应),因此基础研究的突破才是未来的根本。另外一个趋势就是麦克风阵列的小型化,麦克风阵列受制于半波长理论的限制。量子麦克风阵列内容
深圳鱼亮科技有限公司是一家集研发、制造、销售为一体的****,公司位于龙华街道清华社区建设东路青年创业园B栋3层12号,成立于2017-11-03。公司秉承着技术研发、客户优先的原则,为国内智能家居,语音识别算法,机器人交互系统,降噪的产品发展添砖加瓦。主要经营智能家居,语音识别算法,机器人交互系统,降噪等产品服务,现在公司拥有一支经验丰富的研发设计团队,对于产品研发和生产要求极为严格,完全按照行业标准研发和生产。深圳鱼亮科技有限公司研发团队不断紧跟智能家居,语音识别算法,机器人交互系统,降噪行业发展趋势,研发与改进新的产品,从而保证公司在新技术研发方面不断提升,确保公司产品符合行业标准和要求。智能家居,语音识别算法,机器人交互系统,降噪产品满足客户多方面的使用要求,让客户买的放心,用的称心,产品定位以经济实用为重心,公司真诚期待与您合作,相信有了您的支持我们会以昂扬的姿态不断前进、进步。
上一篇: 浙江信息化麦克风阵列标准
下一篇: 湖南自主可控麦克风阵列哪里买