北京智能音响声学回声打断交互算法
黑色这条线是标准NLMS算法的回声抑制比。我们可以看到,NLMS算法在收敛之后,回声抑制比只能到10个分贝左右,相对比较低。而双耦合算法在收敛之后,可以达到25个分贝以上,也就是说它比NLMS算法多15个分贝,这个优势是很明显的。接下来我们再看第二个示例,针对弱非线性失真的情况,左边是语谱,右边是回声抑制比。我们评估单讲性能的主要指标是回声抑制比和收敛速度。首先看一下NLMS算法,它在收敛之后,大概可以抑制22~25个分贝。这个算法的收敛速度很慢,大概经过100多帧之后才会进入到相对收敛的状态。再来看一下双耦合算法,在稳定之后,可以抑制35~40个分贝,比NLMS算法大概提升15~20个分贝的回声抑制比。同时它还有一个很明显的优势:收敛速度很快,几乎是回声到了之后,他瞬间就进入到收敛状态。接下来这个是针对不同手机机型的回声抑制比的比较。红色是双耦合算法,蓝色是NLMS算法,从这组数据里面,我们可以看到双耦合算法比NLMS算法普遍提升了大概10个分贝以上的回声抑制比,具有比较大的优势。再进入双讲测试场景。我首先介绍一下测试的示例,这组数据是一个视频会议的数据,左边这个是原始的麦克信号语谱,右边这个是回声参考信号语谱。
搜索“声学回声消除”的相关文献,一共找到了3402篇。北京智能音响声学回声打断交互算法
就得到了非线性滤波器的比较好解,它具有小二乘估计形式。第三步构建耦合机制。在介绍耦合机制之前,先说一下我对这种耦合机制的期望特性。我希望在声学系统的线性度非常好的情况下,线性滤波器起到主导作用,而非线性滤波器处于休眠的状态,或者关闭的状态;反过来,当声学系统的非线性很强时,希望非线性滤波器起到主导作用,而线性滤波器处于半休眠状态。实际声学系统往往是非线性与线性两种状态的不断交替、叠加,因此我们希望构建一种机制来对这两种状态进行耦合控制。为了设计耦合机制,就必须对线性度和非线性度特征进行度量。因此,我们定义了两个因子,分别是线性度因子和非线性度因子,对应左边的这两个方程。而我们进行耦合控制的基本的思想就是将这两个因子的值代入到NLMS算法和小二乘算法之中,调整二者的学习速度。为了便于大家对双耦合声学回声消除算法有一个定性的认识,我又画了一组曲线,左边一组对应的是线性回声的场景。我们首先来看一下NLMS算法,黄色曲线真实的系统传递函数,红色曲线是NLMS算法的结果。可以看到,在线性场景下,NLMS算法得到的线性滤波器可以有效逼近真实传递函数,进而能够有效抑制线性声学回声。下面再来看一下这个双耦合算法。
商显声学回声私人定做什么是非线性声学回声,它产生的原理、研究现状以及技术难点等问题。
该技术的出现旨在消除这种因远程网络会议所带来的回授现象,以遏制首先次回声产生所需的必要条件来遏制多次回声的出现。为什么要费那么大周折去抑制回声?这个话题应该不言而喻了。会议、语音扩声讲究的即是STI语音清晰度(可懂度),而回声是语言清晰度的比较大。设想踩脚跟式的语音信号传达到耳朵,听者难受,讲者费劲,对于这样的语音会议来说,那必将是一场灾难。我们把声学回声消除这个技术变成一张实体的插件(设备插卡),在系统中,为实现首先次回声过滤(过滤回声源则过滤多次回声)。这个技术应该插入在系统的哪个环节呢?我们不妨来找找系统中具备近乎相同/相似信号的一级进出环节。该图片经我司设计员制作后作者再编辑通过上图的分析,我们并不难发现一组具备相似信号的输入输出环节。而AEC技术认为,在这里对回声下手是治根的办法!市面上有多种类的回声消除器,也有部分抑制器,其算法和解决办法各有不同,本文就不详细阐释了。须知,通过对具有相似性极高的输入、输出信号的比对,约掉这一具备相似信号的输出,即切断了回授的根源,A地将不再听到回声现象。笔者也经常遇到有用户因远程会议本地有回声而采购了带有AEC回声消除功能的处理器。
也能够更清楚地看到这里面可能存在的回授现象。部分工程师在调试远程会议系统时也许遇到过啸叫,那可不一定是本地系统没调好所造成的,你会发现,关掉终端一切非常正常。为什么绝大多数的远程系统没有啸叫呢?这还得感谢您还不算非常质量的网络。我们常说,距离产生延时,而在模拟音频大举转向数字音频、网络音频的,网络信号的延迟也为音频领域赋予了新的现象,尤其应用在远程会议这样的音频传输系统当中,它能将一次次回授剥离成一次次听似回声的现象,这就是网络音频回声。通常由A地发出的声源A在几乎不经过延迟处理的本地系统中,通过A地音箱扩声;而其经过网络终端编码送向远端时,除了考虑A地的上传时间X,还得考虑B地的下载时间Y。在这样一个架构在Internet网络传输环境中的声音,其到达B地扩声音箱出来的信号则是A+X+Y。经B地本地话筒拾取后的该信号,再由B地的上传网速(时间)Z、A地的下载时间W传送回A地扩声音箱,其表现出的信号则会出现一次A信号,及一次赋予了(X+Y+Z+W)时间的A信号。假设A地—B地传输时间总和为200ms,B地—A地传输时间总和为200ms,则信号的一去一回。体现在A扩声音箱中至少会存在A和A+400ms的信号,若反馈信号电平足够强。则再被话筒拾取。
非线性声学回声产生的原因。
再次回授、无限循环而产生反馈现象,而系统在均衡声场后,该现象其实是可以得到明显改观的。但话筒的拾音灵敏度是不是可以无限大呢?不是,在足够电平条件下,它始终会因拾取到具有相干性频率相位关系的输入信号而建立起回授。该图片源于网络上述啸叫现象并不是本文重点,但它为我们讨论接下来的话题提供了一个前提,那就是(同一个声场环境中)话筒和音箱无论怎么摆都无法做到完全的隔离,更别说空间声场条件有限的小中型会议室了。在一套有扩声、有拾音的远程会议系统中,为了防止信号回授,我们通常会有意识地将远端输入信号不再路由给远端输出。然而无法抗拒的是,本地话筒因拾取到远端传送至本地扩声的信号,仍可将声音重新传送至远端。这也是一种回授,明显的远程回授现象可使得系统发生自激震荡。该图片经我司设计员制作后作者再编辑通过一个简易的远程音频传输示意图,能帮助我们更容易地理解声音信号是怎样的流向。也能够更清楚地看到这里面可能存在的回授现象。部分工程师在调试远程会议系统时也许遇到过啸叫,那可不一定是本地系统没调好所造成的,你会发现,关掉终端一切非常正常。为什么绝大多数的远程系统没有啸叫呢?这还得感谢您还不算非常质量的网络。
什么是非线性声学回声。商显声学回声私人定做
非线性声学回声消除的技术难点。北京智能音响声学回声打断交互算法
反映到听感上就是回声(远端判断成近端)或丢字(近端判断为远端)。(2)计算近端信号d(n)与估计的回声信号e(n)的相干性,如图5(b),第二行为估计的回声信号e(n),第三行为二者相干性cohde,很明显近端的部分几乎全部逼近,WebRTC用比较严格的门限(>=)即可将区分绝大部分近端帧,且误判的概率比较小,WebRTC工程师设置如此严格的门限想必是宁可一部分双讲效果,也不愿意接受回声残留。从图5可以体会到,线性滤波之后可以进一步凸显远端参考信号x(n)与估计的回声信号e(n)的差异,从而提高远近端帧状态的判决的可靠性。存在的问题与改进理想情况下,远端信号从扬声器播放出来没有非线性失真,那么e(n)=s(n)+v(n),但实际情况下e(n)与d(n)很像,只是远端区域有一些幅度上的变化,说明WebRTCAEC线性部分在这个case中表现不佳,如图6(a)从频谱看低频段明显削弱,但中高频部分几乎没变。而利用变步长的双滤波器结构的结果会非常明显,如图6(b)所示无论是时域波形和频谱与近端信号x(n)都有很大差异,目前aec3和speex中都采用这种结构,可见WebRTCAEC中线性部分还有很大的优化空间。如何衡量改进的线性部分效果?这里我们对比了现有的固定步长的NLMS和变步长的NLMS。近端信号d。
北京智能音响声学回声打断交互算法
深圳鱼亮科技有限公司位于龙华街道清华社区建设东路青年创业园B栋3层12号,交通便利,环境优美,是一家服务型企业。是一家有限责任公司(自然)企业,随着市场的发展和生产的需求,与多家企业合作研究,在原有产品的基础上经过不断改进,追求新型,在强化内部管理,完善结构调整的同时,良好的质量、合理的价格、完善的服务,在业界受到宽泛好评。公司业务涵盖智能家居,语音识别算法,机器人交互系统,降噪,价格合理,品质有保证,深受广大客户的欢迎。深圳鱼亮科技自成立以来,一直坚持走正规化、专业化路线,得到了广大客户及社会各界的普遍认可与大力支持。