深圳自主可控语音关键事件检测介绍

时间:2023年05月06日 来源:

    确定当前时刻,关于目标防护舱的事件检测结果。需要说明的是,电子设备可以通过多种方式执行上述步骤f23,对此本发实施例不作具体限定。为了行文清晰,后续对上述步骤f23的具体实现方式进行举例说明。显然,在本实施例三中,采用多种数据来确定检测关于目标防护舱的事件检测结果,使得到的事件检测结果更可靠,且具有说服力,从而可以提高对防护舱内用户出现异常事件的检测准确率。其中,由于类图像可能为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像,也可能为:当前帧图像;第二类图像可能为:包括光流图和光流图之前的连续n帧光流图的多张图像,也可能为:光流图。因此,在本实施例三中,待分析图像和辅助图像,以及分别对应的场景图像检测模型和光流图检测模型,也可能存在多种情况。具体的:种情况:待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像;场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像;辅助图像为:包括光流图和光流图之前的连续n帧光流图的多张图像。语音关键事件检测是什么?深圳自主可控语音关键事件检测介绍

    在清单中,LayerUI的installUI()方法调用setLayerEventMask()检测鼠标移动事件,它又调用eventDispatched()方法返回结果。这个方法首先调用()方法确定鼠标移动事件相对于层的坐标位置。接下来这个方法通过检查它的坐标是否落在围绕UI中心的一个矩形区域内,检测鼠标指针是否移到印记文本上方,如果坐标刚好落在这个矩形区域内,印记文本的颜色就变为淡红色,除此以外,印记文本的颜色就恢复为蓝色。显示了鼠标移到印记文本上方前后的颜色变化。鼠标指针移到文本上方时,重新绘制文本颜色给用户一个不刺眼的提示小结JLayer对自定义绘制和事件检测的支持让你可以改进UI的各个组件,你可以将这个Swing组件和半透明及任意形状窗口特性结合起来使用,让你可以设计出更有趣的用户界面。深圳自主可控语音关键事件检测介绍语音关键事件检测的成熟度如何?

    n个摄像头11与控制器12之间进行无线通信时,所采用的无线通信协议可以为wifi、蓝牙、zigbee等。可以理解的是,n个摄像头11还可以采用其他的无线通信协议与控制器12进行无线通信,本实用新型实施例不做赘述。在具体应用中,可以在游泳池壁的四周均匀设置摄像头11。通过设置的n个摄像头,可以采集水平方向上游泳池内的图像。在具体实施中,在设置n个摄像头11时,在垂直方向上,每一个摄像头11所设置的位置与游泳池水面之间的距离可以均小于预设值。摄像头11所设置的位置可以位于游泳池水面以下,也可以位于游泳池水面以上,还可以位于游泳池水面附近。在设置摄像头11时,可以将n个摄像头11均设置在游泳池水面以下,且与游泳池水面的垂直距离小于预设值;也可以将n个摄像头11均设置在游泳池水面以上,且与游泳池水面的垂直距离小于预设距离;还可以将n个摄像头11中的一部分设置在游泳池水面以下,其余部分设置在游泳池水面以上。在本实用新型实施例中,预设值可以为50厘米,也可以为40厘米或30厘米。可以理解的是,预设值还可以为其他值,可以根据具体的应用场景设定不同的预设值。在具体实施中,在水平方向上,多个摄像头11可以均匀排列。

    该m+1帧图像便可以组成一个样本图像组,并进一步确定该样本图像组的事件检测结果为:采集该m+1帧图像时,该防护舱内发生的事件类型。具体的,当待分析图像为:当前帧图像,则场景图像检测模型为:采用各个样本图像和每个样本图像的事件检测结果所训练得到的模型,且每个样本图像为一帧场景图像。其中,针对至少一个防护舱,在该防护舱中发生各类事件时,采集一帧关于该防护舱的图像,并将采集该图像时,该防护舱内发生的事件类型作为该图像的事件检测结果,这样,便可以得到一个样本图像组及样本图像组的事件检测结果。实施例二:待分析图像为上述第二类图像,即待分析图像为:至少包含光流图的光流图;则上述步骤s303,包括如下步骤g1-g2:步骤g1:将待分析图像输入到预设的光流图检测模型中,得到光流图检测模型输出的检测结果;步骤g2:基于光流图检测模型输出的检测结果,确定关于目标防护舱的事件检测结果。其中,由于待分析图像为目标防护舱的场景图像对应的光流图,则在本实施例二中,所采用的检测模型即为预设的光流图检测模型,且用于训练该光流图检测模型的各个第二样本图像组中所包括的图像即为光流图。需要说明的是。语音关键事件检测真的好用吗?

    检测模型为:基于各个样本图像和每个样本图像的事件检测结果所训练得到的模型。在该检测模型的训练过程中,可以将各个样本图像作为待训练模型的输入,将各个样本图像的事件检测结果作为待训练模型的输出。这样,在训练过程中,待训练模型可以学习各个样本图像中的图像特征,输出各个样本图像的事件检测结果,逐步建立样本图像的图像特征和事件检测结果的对应关系。这样,经过大量样本图像的学习,便可以得到上述检测模型。而该训练得到的检测模型也就可以用于对基于当前帧图像确定的待分析图像进行检测,输出的事件检测结果,即为关于目标防护舱的事件检测结果。显然,在训练上述检测模型时,所使用的样本图像为关于防护舱的图像。需要强调的是,不同类型和数量的待分析图像,所利用的检测模型也是不同的。为了行为清楚,后续将会对待分析图像与检测模型之间的对应关系进行举例说明。需要说明的是,上述检测模型可以在电子设备中训练得到的,也可以在与电子设备通信连接的其他电子设备中训练得到的,这样,电子设备便可以从该其他电子设备中获得上述检测模型,这都是合理的。此外,在本发明实施例中,电子设备可以检测目标防护舱内是否发生异常事件,则在这种情况下。语音关键事件检测的评价怎么样?深圳自主可控语音关键事件检测介绍

语音关键事件检测技术怎么样?深圳自主可控语音关键事件检测介绍

    电子设备可以确定存在用户进入目标防护舱,则在当前时刻,目标防护舱内可能发生异常事件,这样,电子设备便可以继续执行步骤s303。需要说明的是,在本实现方式中,电子设备可以采用任一能够检测出当前帧图像和当前帧图像之前的连续预设数量帧图像中是否均包含目标对象的图像识别算法执行上述步骤s302a,对此,本发明实施例不做具体限定。其中,上述预设数量可以为任一正整数,例如,5,10等,这都是合理的。下面,对电子设备执行上述步骤s302a的具体过程进行说明:电子设备在获取到每帧关于目标防护舱的图像后,判断该图像中是否包含目标对象。进而,在获取该图像的下一帧图像后,判断该下一帧图像中是否包括与前一帧图像相同的目标对象。依次类推,直至电子设备判断连续预设数量帧图像后中均包含相同的目标对象后,电子设备继续获得下一帧图像,即采集完连续预设数量帧图像后的当前时刻对应的当前帧图像,并判断该当前帧图像中是否包括前连续预设数量帧图像所包含的目标对象。这样,当判断结果为是时,电子设备便可以继续执行后续步骤s303。另一种具体实现方式中,如图5所示。深圳自主可控语音关键事件检测介绍

深圳鱼亮科技有限公司位于龙华街道清华社区建设东路青年创业园B栋3层12号,是一家专业的语音识别,音效算法,降噪算法,机器人,智能玩具,软件服务,教育培训,芯片开发,电脑,笔记本,手机,耳机,智能穿戴,进出口服务,云计算,计算机服务,软件开发,底层技术开发,软件服务进出口,品牌代理服务。公司。在深圳鱼亮科技近多年发展历史,公司旗下现有品牌Bothlent等。公司不仅*提供专业的语音识别,音效算法,降噪算法,机器人,智能玩具,软件服务,教育培训,芯片开发,电脑,笔记本,手机,耳机,智能穿戴,进出口服务,云计算,计算机服务,软件开发,底层技术开发,软件服务进出口,品牌代理服务。,同时还建立了完善的售后服务体系,为客户提供良好的产品和服务。深圳鱼亮科技始终以质量为发展,把顾客的满意作为公司发展的动力,致力于为顾客带来***的智能家居,语音识别算法,机器人交互系统,降噪。

上一篇: 山东移动降噪特征

下一篇: 天津降噪介绍

信息来源于互联网 本站不为信息真实性负责