深圳数字语音识别标准
在我们的生活中,语言是传递信息重要的方式,它能够让人们之间互相了解。人和机器之间的交互也是相同的道理,让机器人知道人类要做什么、怎么做。交互的方式有动作、文本或语音等等,其中语音交互越来越被重视,因为随着互联网上智能硬件的普及,产生了各种互联网的入口方式,而语音是简单、直接的交互方式,是通用的输入模式。在1952年,贝尔研究所研制了世界上能识别10个英文数字发音的系统。1960年英国的Denes等人研制了世界上语音识别(ASR)系统。大规模的语音识别研究始于70年代,并在单个词的识别方面取得了实质性的进展。上世纪80年代以后,语音识别研究的重点逐渐转向更通用的大词汇量、非特定人的连续语音识别。90年代以来,语音识别的研究一直没有太大进步。但是,在语音识别技术的应用及产品化方面取得了较大的进展。自2009年以来,得益于深度学习研究的突破以及大量语音数据的积累,语音识别技术得到了突飞猛进的发展。深度学习研究使用预训练的多层神经网络,提高了声学模型的准确率。微软的研究人员率先取得了突破性进展,他们使用深层神经网络模型后,语音识别错误率降低了三分之一,成为近20年来语音识别技术方面快的进步。另外,随着手机等移动终端的普及。语音识别在移动端和音箱的应用上为火热,语音聊天机器人、语音助手等软件层出不穷。深圳数字语音识别标准
将匹配度高的识别结果提供给用户。ASR技术已经被应用到各种智能终端,为人们提供了一种崭新的人机交互体验,但多数都是基于在线引擎实现。本文针对离线网络环境,结合特定领域内的应用场景,提出了一套实用性强,成本较低的语音识别解决方案,实现非特定人连续语音识别功能。第二章本文从方案的主要功能模块入手,对涉及到的关键要素进行详细的分析描述,同时对实现过程中的关键事项进行具体分析,并提出应对措施。第三章根据方案设计语音拨号软件,并对语音拨号软件的功能进行科学的测试验证。1低成本的语音识别解决方案(1)主要功能划分在特定领域内的语音识别,主要以命令发布为主,以快捷实现人机交互为目的。比如在电话通信领域,我们常以“呼叫某某某”、“帮我查找某某某电话”为语音输入,这些输入语音语法结构单一,目的明确,场景性较强,本方案决定采用命令模式实现语音识别功能。方案主要包括四个功能模块:语音控制模块、音频采集模块、语音识别离线引擎和应用数据库模块,各模块的主要功能及要求如图1所示。图1低成本语音识别解决方案功能模块语音控制模块作为方案实现的模块,主要用于实现语音识别的控制管理功能。吉林苹果语音识别从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成。
在人与机器设备交互中,言语是方便自然并且直接的方式之一。同时随着技术的进步,越来越多的人们也期望设备能够具备与人进行言语沟通的能力,因此语音识别这一技术也越来越受到人们关注。尤其随着深度学习技术应用在语音识别技术中,使得语音识别的性能得到了很大的提升,也使得语音识别技术的普及成为了现实,深圳鱼亮科技专业语音识别技术提供商,提供:语音唤醒,语音识别,文字翻译,AI智能会议,信号处理,降噪等语音识别技术。
DTW)技术基本成熟,特别提出了矢量量化(Vec⁃torQuantization,VQ)和隐马尔可夫模型(HiddenMar⁃kovModel,HMM)理论。20世纪80年代,语音识别任务开始从孤立词、连接词的识别转向大词汇量、非特定人、连续语音的识别,识别算法也从传统的基于标准模板匹配的方法转向基于统计模型的方法。在声学模型方面,由于HMM能够很好的描述语音时变性和平稳性,开始被应用于大词汇量连续语音识别(LargeVocabularyContinousSpeechRecognition,LVCSR)的声学建模;在语言模型方面,以N元文法的统计语言模型开始应用于语音识别系统。在这一阶段,基于HMM/VQ、HMM/高斯混合模型、HMM/人工神经网络的语音建模方法开始应用于LVCSR系统,语音识别技术取得新突破。20世纪90年代以后,伴随着语音识别系统走向实用化,语音识别在细化模型的设计、参数提取和优化、系统的自适应方面取得较大进展。同时,人们更多地关注话者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题。此外,语音识别技术开始与其他领域相关技术进行结合,以提高识别的准确率,便于实现语音识别技术的产品化。怎么构建语音识别系统?语音识别系统构建总体包括两个部分:训练和识别。随着语音识别技术在未来的不断发展,语音识别芯片的不敢提高,给我们的生活带来了更大的便利和智能化。
主流方向是更深更复杂的神经网络技术融合端到端技术。2018年,科大讯飞提出深度全序列卷积神经网络(DFCNN),DFCNN使用大量的卷积直接对整句语音信号进行建模,主要借鉴了图像识别的网络配置,每个卷积层使用小卷积核,并在多个卷积层之后再加上池化层,通过累积非常多卷积池化层对,从而可以看到更多的历史信息。2018年,阿里提出LFR-DFSMN(LowerFrameRate-DeepFeedforwardSequentialMemoryNetworks)。该模型将低帧率算法和DFSMN算法进行融合,语音识别错误率相比上一代技术降低20%,解码速度提升3倍。FSMN通过在FNN的隐层添加一些可学习的记忆模块,从而可以有效的对语音的长时相关性进行建模。而DFSMN是通过跳转避免深层网络的梯度消失问题,可以训练出更深层的网络结构。2019年,百度提出了流式多级的截断注意力模型SMLTA,该模型是在LSTM和CTC的基础上引入了注意力机制来获取更大范围和更有层次的上下文信息。其中流式表示可以直接对语音进行一个小片段一个小片段的增量解码;多级表示堆叠多层注意力模型;截断则表示利用CTC模型的尖峰信息,把语音切割成一个一个小片段,注意力模型和解码可以在这些小片段上展开。在线语音识别率上。意味着具备了与人类相仿的语言识别能力。深圳数字语音识别标准
声学模型和语言模型都是当今基于统计的语音识别算法的重要组成部分。深圳数字语音识别标准
应用背景随着信息时代的到来,语音技术、无纸化技术发展迅速,但是基于会议办公的应用场景,大部分企业以上技术应用都不够广,会议办公仍存在会议记录强度高、出稿准确率低,会议工作人员压力大等问题。为解决上述问题,智能语音识别编译管理系统应运而生。智能语音识别编译管理系统的主要功能是会议交流场景下语音实时转文字,解决了人工记录会议记要易造成信息偏差、整理工作量大、重要会议信息得不到体系化管控、会议发言内容共享不全等问题,提升语音技术在会议中的应用水平,切实提升会议的工作效率。实现功能智能语音识别编译管理系统对会议信息进行管理,实现实时(历史)会议语音转写和在线编辑;实现角色分离、自动分段、关键词优化、禁忌词屏蔽、语气词过滤;实现全文检索、重点功能标记、按句回听;实现展板设置、导出成稿、实时上屏等功能。技术特点语音转文字准确率高。系统中文转写准确率平均可达95%,实时语音转写效率能够达到≤200毫秒,能够实现所听即所见的视觉体验。系统能够结合前后文智能进行语句顺滑、智能语义分段,语音转写过程中也能够直接对转写的文本进行编辑,编辑完成后即可出稿。会议内容记录更完整。系统可实现对全部发言内容的记录。深圳数字语音识别标准