深圳量子语音识别供应

时间:2023年11月06日 来源:

    没有任何一个公司可以全线打造所有的产品。语音识别的产业趋势当语音产业需求四处开花的同时,行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。远场语音识别已经随着智能音箱的兴起成为全球消费电子领域应用为成功的技术之一。深圳量子语音识别供应

    Google将其应用于语音识别领域,取得了非常好的效果,将词错误率降低至。如下图所示,Google提出新系统的框架由三个部分组成:Encoder编码器组件,它和标准的声学模型相似,输入的是语音信号的时频特征;经过一系列神经网络,映射成高级特征henc,然后传递给Attention组件,其使用henc特征学习输入x和预测子单元之间的对齐方式,子单元可以是一个音素或一个字。,attention模块的输出传递给Decoder,生成一系列假设词的概率分布,类似于传统的语言模型。端到端技术的突破,不再需要HMM来描述音素内部状态的变化,而是将语音识别的所有模块统一成神经网络模型,使语音识别朝着更简单、更高效、更准确的方向发展。语音识别的技术现状目前,主流语音识别框架还是由3个部分组成:声学模型、语言模型和解码器,有些框架也包括前端处理和后处理。随着各种深度神经网络以及端到端技术的兴起,声学模型是近几年非常热门的方向,业界都纷纷发布自己新的声学模型结构,刷新各个数据库的识别记录。由于中文语音识别的复杂性,国内在声学模型的研究进展相对更快一些,主流方向是更深更复杂的神经网络技术融合端到端技术。2018年,科大讯飞提出深度全序列卷积神经网络(DFCNN)。

    深圳量子语音识别供应一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。

    即识别准确率为,相较于2013年的准确率提升了接近20个百分点。这种水平的准确率已经接近正常人类。2016年10月18日,微软语音团队在Switchboard语音识别测试中打破了自己的好成绩,将词错误率降低至。次年,微软语音团队研究人员通过改进语音识别系统中基于神经网络的声学模型和语言模型,在之前的基础上引入了CNN-BLSTM(ConvolutionalNeuralNetworkCombinedwithBidirectionalLongShort-TermMemory,带有双向LSTM的卷积神经网络)模型,用于提升语音建模的效果。2017年8月20日,微软语音团队再次将这一纪录刷新,在Switchboard测试中将词错误率从,即识别准确率达到,与谷歌一起成为了行业。另外,亚马逊(Amazon)公司在语音行业可谓后发制人,其在2014年底正式推出了Echo智能音箱,并通过该音箱搭载的Alexa语音助理,为使用者提供种种应用服务。Echo智能音箱一经推出,在消费市场上取得了巨大的成功。如今已成为美国使用广的智能家居产品,至今累计销量已超过2000万台。投资机构摩根士丹利分析师称智能音箱是继iPad之后"成功的消费电子产品"。国内语音识别现状国内早的语音识别研究开始于1958年,中国科学院声学所研究出一种电子管电路,该电子管可以识别10个元音。1973年。

    语音文件“/timit/test/dr5/fnlp0/”的波形图、语谱图和标注SwitchBoard——对话式电话语音库,采样率为8kHz,包含来自美国各个地区543人的2400条通话录音。研究人员用这个数据库做语音识别测试已有20多年的历史。LibriSpeech——英文语音识别数据库,总共1000小时,采样率为16kHz。包含朗读式语音和对应的文本。Thchs-30——清华大学提供的一个中文示例,并配套完整的发音词典,其数据集有30小时,采样率为16kHz。AISHELL-1——希尔贝壳开源的178小时中文普通话数据,采样率为16kHz。包含400位来自中国不同口音地区的发音人的语音,语料内容涵盖财经、科技、体育、娱乐、时事新闻等。语音识别数据库还有很多,包括16kHz和8kHz的数据。海天瑞声、数据堂等数据库公司提供大量的商用数据库,可用于工业产品的开发。08语音识别评价指标假设"我们明天去动物园"的语音识别结果如下:识别结果包含了删除、插入和替换错误。度量语音识别性能的指标有许多个,通常使用测试集上的词错误率(WordErrorRate,WER)来判断整个系统的性能,其公式定义如下:其中,NRef表示测试集所有的词数量,NDel表示识别结果相对于实际标注发生删除错误的词数量,NSub发生替换错误的词数量。一个连续语音识别系统大致包含了四个主要部分:特征提取、声学模型、语言模型和解码器等。

    特别是在Encoder层,将传统的RNN完全用Attention替代,从而在机器翻译任务上取得了更优的结果,引起了极大关注。随后,研究人员把Transformer应用到端到端语音识别系统中,也取得了非常明显的改进效果。另外,生成式对抗网络(GenerativeAdversarialNetwork,GAN)是近年来无监督学习方面具前景的一种新颖的深度学习模型,"GenerativeAdversarialNets",文中提出了一个通过对抗过程估计生成模型框架的全新方法。通过对抗学习,GAN可用于提升语音识别的噪声鲁棒性。GAN网络在无监督学习方面展现出了较大的研究潜质和较好的应用前景。从一个更高的角度来看待语音识别的研究历程,从HMM到GMM,到DNN,再到CTC和Attention,这个演进过程的主线是如何利用一个网络模型实现对声学模型层面更准的刻画。换言之,就是不断尝试更好的建模方式以取代基于统计的建模方式。在2010年以前,语音识别行业水平普遍还停留在80%的准确率以下。机器学习相关模型算法的应用和计算机性能的增强,带来了语音识别准确率的大幅提升。到2015年,识别准确率就达到了90%以上。谷歌公司在2013年时,识别准确率还只有77%,然而到2017年5月时,基于谷歌深度学习的英语语音识别错误率已经降低到。声学模型和语言模型都是当今基于统计的语音识别算法的重要组成部分。深圳量子语音识别供应

该领域的大部分进展归功于计算机能力的迅速提高。深圳量子语音识别供应

    传统的人机交互依靠复杂的键盘或按钮来实现,随着科技的发展,一些新型的人机交互方式也随之诞生,带给人们全新的体验。基于语音识别的人机交互方式是目前热门的技术之一。但是语音识别功能算法复杂、计算量大,一般在计算机上实现,即使是嵌入式方面,多数方案也需要运算能力强的ARM或DSP,并且外扩RAM、FLASH等资源,增加了硬件成本,这些特点无疑限制了语音识别技术的应用,尤其是嵌入式领域。本系统采用的主控MCU为Atmel公司的ATMEGA128,语音识别功能则采用ICRoute公司的单芯片LD3320。LD3320内部集成优化过的语音识别算法,无需外部FLASH,RAM资源,可以很好地完成非特定人的语音识别任务。1整体方案设计1.1语音识别原理在计算机系统中,语音信号本身的不确定性、动态性和连续性是语音识别的难点。主流的语音识别技术是基于统计模式识别的基本理论。2.1控制器电路控制器选用Atmel公司生产的ATMEGA128芯片,采用先进的RISC结构,内置128KBFLASH,4KBSRAM,4KBE2PROM等丰富资源。该芯片是业界高性能、低功耗的8位微处理器,并在8位单片机市场有着广泛应用。2.2LD3320语音识别电路LD3320芯片是一款“语音识别”芯片。 深圳量子语音识别供应

信息来源于互联网 本站不为信息真实性负责