陕西语音识别设置

时间:2023年12月20日 来源:

    语音文件“/timit/test/dr5/fnlp0/”的波形图、语谱图和标注SwitchBoard——对话式电话语音库,采样率为8kHz,包含来自美国各个地区543人的2400条通话录音。研究人员用这个数据库做语音识别测试已有20多年的历史。LibriSpeech——英文语音识别数据库,总共1000小时,采样率为16kHz。包含朗读式语音和对应的文本。Thchs-30——清华大学提供的一个中文示例,并配套完整的发音词典,其数据集有30小时,采样率为16kHz。AISHELL-1——希尔贝壳开源的178小时中文普通话数据,采样率为16kHz。包含400位来自中国不同口音地区的发音人的语音,语料内容涵盖财经、科技、体育、娱乐、时事新闻等。语音识别数据库还有很多,包括16kHz和8kHz的数据。海天瑞声、数据堂等数据库公司提供大量的商用数据库,可用于工业产品的开发。08语音识别评价指标假设"我们明天去动物园"的语音识别结果如下:识别结果包含了删除、插入和替换错误。度量语音识别性能的指标有许多个,通常使用测试集上的词错误率(WordErrorRate,WER)来判断整个系统的性能,其公式定义如下:其中,NRef表示测试集所有的词数量,NDel表示识别结果相对于实际标注发生删除错误的词数量,NSub发生替换错误的词数量。怎么构建语音识别系统?语音识别系统构建总体包括两个部分:训练和识别。陕西语音识别设置

    它将执行以下操作:进行声音输入:“嘿Siri,现在几点了?”通过声学模型运行语音数据,将其分解为语音部分。·通过语言模型运行该数据。输出文本数据:“嘿Siri,现在几点了?”在这里,值得一提的是,如果自动语音识别系统是语音用户界面的一部分,则ASR模型将不是***在运行的机器学习模型。许多自动语音识别系统都与自然语言处理(NLP)和文本语音转换(TTS)系统配合使用,以执行其给定的角色。也就是说,深入研究语音用户界面本身就是个完整的话题。要了解更多信息,请查看此文章。那么,现在知道了ASR系统如何运作,但需要构建什么?建立ASR系统:数据的重要性ASR系统应该具有灵活性。它需要识别各种各样的音频输入(语音样本),并根据该数据做出准确的文本输出,以便做出相应的反应。为实现这一点,ASR系统需要的数据是标记的语音样本和转录形式。比这要复杂一些(例如,数据标记过程非常重要且经常被忽略),但为了让大家明白,在此将其简化。ASR系统需要大量的音频数据。为什么?因为语言很复杂。对同一件事有很多种讲述方式,句子的意思会随着单词的位置和重点而改变。还考虑到世界上有很多不同的语言,在这些语言中。 新疆语音识别模块哪些领域又运用到语音识别技术呢?

    它在某些实际场景下的识别率无法达到人们对实际应用的要求和期望,这个阶段语音识别的研究陷入了瓶颈期。第三阶段:深度学习(DNN-HMM,E2E)2006年,变革到来。Hinton在全世界学术期刊Science上发表了论文,di一次提出了"深度置信网络"的概念。深度置信网络与传统训练方式的不同之处在于它有一个被称为"预训练"(pre-training)的过程,其作用是为了让神经网络的权值取到一个近似优解的值,之后使用反向传播算法(BP)或者其他算法进行"微调"(fine-tuning),使整个网络得到训练优化。Hinton给这种多层神经网络的相关学习方法赋予了一个全新的名词——"深度学习"(DeepLearning,DL)。深度学习不*使深层的神经网络训练变得更加容易,缩短了网络的训练时间,而且还大幅度提升了模型的性能。以这篇划时代的论文的发表为转折点,从此,全世界再次掀起了对神经网络的研究热潮,揭开了属于深度学习的时代序幕。在2009年,Hinton和他的学生Mohamed将深层神经网络(DNN)应用于声学建模,他们的尝试在TIMIT音素识别任务上取得了成功。然而TIMIT数据库包含的词汇量较小。在面对连续语音识别任务时还往往达不到人们期望的识别词和句子的正确率。2012年。

    feed-forwardsequentialmemorynetwork,FSMN),在DNN的隐层旁增加了一个“记忆模块”,这个记忆模块用来存储对判断当前语音帧有用的语音信号的历史信息和未来信息,并且只需等待有限长度的未来语音帧。随后,科大讯飞进一步提出了深度全序列卷积神经网络(DFCNN)。2018年,阿里巴巴改良并开源了语音识别模型DFSMN(DeepFSMN)。2018年,中科院自动化所率先把Transformer应用到语音识别任务,并进一步拓展到中文语音识别。不管是在研究成果还是在产品性能体验上,国内的语音行业整体水平已经达到甚至超越了国际水平。2016年10月,时任百度首席科学家的吴恩达在对微软的语音识别技术与人类水平持平的消息表示祝贺的同时声称,百度的汉语语音识别在2015年就已经超越了人类的平均水平,也就是说百度比微软提前一年实现了这一成绩。当前语音识别系统依然面临着不少应用挑战,其中包括以下主要问题:鲁棒性。目前语音识别准确率超过人类水平主要还是在受限的场景下,比如在安静环境的情况下,而一旦加入干扰信号,尤其是环境噪声和人声干扰,性能往往会明显下降。因此,如何在复杂场景(包括非平稳噪声、混响、远场)下,提高语音识别的鲁棒性,研发"能用=>好用"的语音识别产品。可以删减一组可能的转录语句以保持易处理性。

    传统语音识别系统的发音词典、声学模型和语言模型三大组件被融合为一个E2E模型,直接实现输入语音到输出文本的转换,得到终的识别结果。E2E模型06语音识别开源工具HTK(HMMToolkit)是一个专门用于建立和处理HMM的实验工具包,由剑桥大学的SteveYoung等人开发,非常适合GMM-HMM系统的搭建。Kaldi是一个开源的语音识别工具箱,它是基于C++编写的,可以在Windows和UNIX平台上编译,主要由DanielPovey博士在维护。Kaldi适合DNN-HMM系统(包括Chain模型)的搭建,支持TDNN/TDNN-F等模型。其基于有限状态转换器(FST)进行训练和解码,可用于x-vector等声纹识别系统的搭建。Espnet是一个端到端语音处理工具集,其侧重于端到端语音识别和语音合成。Espnet是使用Python开发的,它将Chainer和Pytorch作为主要的深度学习引擎,并遵循Kaldi风格的数据处理方式,为语音识别和其他语音处理实验提供完整的设置,支持CTC/Attention等模型。07语音识别常用数据库TIMIT——经典的英文语音识别库,其中包含,来自美国8个主要口音地区的630人的语音,每人10句,并包括词和音素级的标注。一条语音的波形图、语谱图和标注。这个库主要用来测试音素识别任务。随着技术的发展,现在口音、方言、噪声等场景下的语音识别也达到了可用状态。广东语音识别学习

由于语音交互提供了更自然、更便利、更高效的沟通形式,语音识别必定将成为未来主要的人机互动接口之一。陕西语音识别设置

    还可能存在语种混杂现象,如中英混杂(尤其是城市白领)、普通话与方言混杂,但商业机构在这方面的投入还不多,对于中英混杂语音一般*能识别简单的英文词汇(如"你家Wi-Fi密码是多少"),因此如何有效提升多语种识别的准确率,也是当前语音识别技术面临的挑战之一。语音识别建模方法语音识别建模方法主要分为模板匹配、统计模型和深度模型几种类型,以下分别介绍DTW、GMM-HMM、DNN-HMM和端到端模型。往往会因为语速、语调等差异导致这个词的发音特征和时间长短各不相同。这样就造成通过采样得到的语音数据在时间轴上无法对齐的情况。如果时间序列无法对齐,那么传统的欧氏距离是无法有效地衡量出这两个序列间真实的相似性的。而DTW的提出就是为了解决这一问题,它是一种将两个不等长时间序列进行对齐并且衡量出这两个序列间相似性的有效方法。DTW采用动态规划的算法思想,通过时间弯折,实现P和Q两条语音的不等长匹配,将语音匹配相似度问题转换为**优路径问题。DTW是模板匹配法中的典型方法,非常适合用于小词汇量孤立词语音识别系统。但DTW过分依赖端点检测,不适合用于连续语音识别,DTW对特定人的识别效果较好。动态时间规整(DTW),它是在马尔可夫链的基础上发展起来的。陕西语音识别设置

信息来源于互联网 本站不为信息真实性负责