甘肃录音语音识别

时间:2023年12月25日 来源:

    语音识别包括两个阶段:训练和识别。不管是训练还是识别,都必须对输入语音预处理和特征提取。训练阶段所做的具体工作是收集大量的语音语料,经过预处理和特征提取后得到特征矢量参数,通过特征建模达到建立训练语音的参考模型库的目的。而识别阶段所做的主要工作是将输入语音的特征矢量参数和参考模型库中的参考模型进行相似性度量比较,然后把相似性高的输入特征矢量作为识别结果输出。这样,终就达到了语音识别的目的。语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。特定人识别是指识别对象为专门的人,非特定人识别是指识别对象是针对大多数用户,一般需要采集多个人的语音进行录音和训练,经过学习,达到较高的识别率。基于现有技术开发嵌入式语音交互系统,目前主要有两种方式:一种是直接在嵌入式处理器中调用语音开发包;另一种是嵌入式处理器外扩展语音芯片。第一种方法程序量大,计算复杂,需要占用大量的处理器资源,开发周期长;第二种方法相对简单,只需要关注语音芯片的接口部分与微处理器相连,结构简单,搭建方便,微处理器的计算负担降低,增强了可靠性,缩短了开发周期。本文的语音识别模块是以嵌入式微处理器为说明。而这也是语音识别技术当前发展比较火热的原因。甘肃录音语音识别

    语音识别技术飞速发展,又取得了几个突破性的进展。1970年,来自前苏联的Velichko和Zagoruyko将模式识别的概念引入语音识别中。同年,Itakura提出了线性预测编码(LinearPredictiveCoding,LPC)技术,并将该技术应用于语音识别。1978年,日本人Sakoe和Chiba在前苏联科学家Vintsyuk的工作基础上,成功地使用动态规划算法将两段不同长度的语音在时间轴上进行了对齐,这就是我们现在经常提到的动态时间规整(DynamicTimeWarping,DTW)。该算法把时间规整和距离的计算有机地结合起来,解决了不同时长语音的匹配问题。在一些要求资源占用率低、识别人比较特定的环境下,DTW是一种很经典很常用的模板匹配算法。这些技术的提出完善了语音识别的理论研究,并且使得孤立词语音识别系统达到了一定的实用性。此后,以IBM公司和Bell实验室为的语音研究团队开始将研究重点放到大词汇量连续语音识别系统(LargeVocabularyContinuousSpeechRecognition,LVCSR),因为这在当时看来是更有挑战性和更有价值的研究方向。20世纪70年代末,Linda的团队提出了矢量量化(VectorQuantization。VQ)的码本生成方法,该项工作对于语音编码技术具有重大意义。甘肃录音语音识别语音识别的狭义语音识别必须走向广义语音识别,致力让机器听懂人类语言,才能将语音识别研究带到更高维度。

    所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品,那就每家都要建立自己云服务稳定,确保响应速度,适配自己所选择的硬件平台,逐项整合具体的内容(比如音乐、有声读物)。这从产品方或者解决方案商的视角来看是不可接受的。这时候就会催生相应的平台服务商,它要同时解决技术、内容接入和工程细节等问题,终达成试错成本低、体验却足够好的目标。平台服务并不需要闭门造车,平台服务的前提是要有能屏蔽产品差异的操作系统,这是AI+IOT的特征,也是有所参照的,亚马逊过去近10年里是同步着手做两件事:一个是持续推出面向终端用户的产品,比如Echo,EchoShow等;一个是把所有产品所内置的系统Alexa进行平台化,面向设备端和技能端同步开放SDK和调试发布平台。虽然GoogleAssistant号称单点技术,但从各方面的结果来看Alexa是当之无愧的系统平台,可惜的是Alexa并不支持中文以及相应的后台服务。国内则缺乏亚马逊这种统治力的系统平台提供商,当前的平台提供商分为两个阵营:一类是以百度、阿里、讯飞、小米、腾讯的传统互联网或者上市公司;一类是以声智等为新兴人工智能公司。新兴的人工智能公司相比传统公司产品和服务上的历史包袱更轻。

    随着科学技术的不断发展,智能语音技术已经融入了人们的生活当中,给人们的生活带来了巨大的方便,其中很多智能家居都会使用离线语音识别模块,这种技术的科技含量非常高,而且它的使用性能也非常好,通过离线语音技术的控制,人们不需要有任何的网络限制,就可以对智能家居进行智能化操控。人们之所以如此的重视智能家居技术,是因为人们生活当中需要智能化来提高生活效率,提高人们的生活质量,所以物联网发展以离线语音识别模块为主的技术突飞猛进,并且已经应用到了各个领域当中,在智能化家居当中,智能语音电视,智能冰箱,以及智能照明系统,全部都已经应用了离线语音识别技术。离线语音识别模块而且这项技术的实用性非常强,随着技术的不断创新,离线语音识别的局限性变得越来越小,人们可以不需要和app的操控,不需要连接网络,就可以通过离线语音识别模块来进行智能化操控,简化了使用智能家居的操作流程,而且智能化离线语音识别的能力非常强,应用到家居生活当中,得到了很好的口碑。所以人们如果想要了解更多关于离线语音识别模块,小编可以分享更多知识,让人们了解离线语音技术的成熟度,并且在今后的智能家居使用过程当中。语音识别技术开始与其他领域相关技术进行结合,以提高识别的准确率,便于实现语音识别技术的产品化。

    DFCNN使用大量的卷积直接对整句语音信号进行建模,主要借鉴了图像识别的网络配置,每个卷积层使用小卷积核,并在多个卷积层之后再加上池化层,通过累积非常多卷积池化层对,从而可以看到更多的历史信息。2018年,阿里提出LFR-DFSMN(LowerFrameRate-DeepFeedforwardSequentialMemoryNetworks)。该模型将低帧率算法和DFSMN算法进行融合,语音识别错误率相比上一代技术降低20%,解码速度提升3倍。FSMN通过在FNN的隐层添加一些可学习的记忆模块,从而可以有效的对语音的长时相关性进行建模。而DFSMN是通过跳转避免深层网络的梯度消失问题,可以训练出更深层的网络结构。2019年,百度提出了流式多级的截断注意力模型SMLTA,该模型是在LSTM和CTC的基础上引入了注意力机制来获取更大范围和更有层次的上下文信息。其中流式表示可以直接对语音进行一个小片段一个小片段的增量解码;多级表示堆叠多层注意力模型;截断则表示利用CTC模型的尖峰信息,把语音切割成一个一个小片段,注意力模型和解码可以在这些小片段上展开。在线语音识别率上,该模型比百度上一代DeepPeak2模型提升相对15%的性能。开源语音识别Kaldi是业界语音识别框架的基石。

    在语音对话场景采买一句话识别(短语音)接口或者实时语音识别(长语音流)接口,都属于流式语音识别。广州光纤数据语音识别服务标准

这些进步不仅体现在该领域发表的学术论文激增上。甘肃录音语音识别

    Sequence-to-Sequence方法原来主要应用于机器翻译领域。2017年,Google将其应用于语音识别领域,取得了非常好的效果,将词错误率降低至。Google提出新系统的框架由三个部分组成:Encoder编码器组件,它和标准的声学模型相似,输入的是语音信号的时频特征;经过一系列神经网络,映射成高级特征henc,然后传递给Attention组件,其使用henc特征学习输入x和预测子单元之间的对齐方式,子单元可以是一个音素或一个字。**后,attention模块的输出传递给Decoder,生成一系列假设词的概率分布,类似于传统的语言模型。端到端技术的突破,不再需要HMM来描述音素内部状态的变化,而是将语音识别的所有模块统一成神经网络模型,使语音识别朝着更简单、更高效、更准确的方向发展。语音识别的技术现状目前,主流语音识别框架还是由3个部分组成:声学模型、语言模型和解码器,有些框架也包括前端处理和后处理。随着各种深度神经网络以及端到端技术的兴起,声学模型是近几年非常热门的方向,业界都纷纷发布自己新的声学模型结构,刷新各个数据库的识别记录。由于中文语音识别的复杂性,国内在声学模型的研究进展相对更快一些。甘肃录音语音识别

信息来源于互联网 本站不为信息真实性负责