广西语音服务介绍

时间:2024年02月21日 来源:

    则可以通过减少数据集内的音频量或完全删除音频并留下文本,来快速缩短训练时间。如果语音服务订阅所在区域没有于训练的硬件,我们强烈建议你完全删除音频并留下文本。美国英语(en-US)英语音频的人为标记的听录必须以纯文本形式提供,使用ASCII字符。避免使用拉丁语-1或Unicode标点字符。从文字处理应用程序中复制文本或从网页中擦除数据时,常常会无意中添加这些字符。如果存在这些字符,请务必将其更新为相应的ASCII替代字符。美国英语的文本规范化文本规范化是指将字词转换为在训练模型时使用的一致格式。某些规范化规则会自动应用到文本,但我们建议你在准备人为标记的听录数据时遵循以下准则:将缩写写成字词。将非标准数字字符串写成字词(例如会计术语)。应按照发音听录非字母字符或混合字母数字字符。不应编辑可以作为字词发音的缩写(例如,“radar”、“laser”、“RAM”或“NATO”)。将发音的缩写写成单独的字母,每个字母用单个空格分开。如果使用音频,请将数字听录为与音频匹配的字词(例如“101”可以读作“oneohone”或“onehundredandone”)。请避免将字符、单词或词组重复三次以上,例如“yeahyeahyeahyeah”。语音服务可能会删除具有此类重复的行。

     在带有于训练的硬件的区域中,语音服务将使用多20小时的音频进行训练。广西语音服务介绍

    由于DNN-HMM训练成本不高而且相对较高的识别概率,所以即使是到现在在语音识别领域仍然是较为常用的声学模型。除了DNN之外,经常用于计算机视觉的CNN也可以拿来构建语音声学模型。当然,CNN也是经常会与其他模型结合使用。CNN用于声学模型方面主要包括TDNN、CNN-DNN框架、DFCNN、CNN-LSTM-DNN(CLDNN)框架、CNN-DNN-LSTM(CDL)框架、逐层语境扩展和注意CNN框架(LACE)等。这么多基于CNN的混合模型框架都在声学模型上取得了很多成果,这里小编挑两个进行简单阐述。TDNN是早基于CNN的语音识别方法,TDNN会沿频率轴和时间轴同时进行卷积,因此能够利用可变长度的语境信息。TDNN用于语音识别分为两种情况,第一种情况下:只有TDNN,很难用于大词汇量连续性语音识别(LVCSR),原因在于可变长度的表述(utterance)与可变长度的语境信息是两回事,在LVCSR中需要处理可变长度表述问题,而TDNN只能处理可变长度语境信息;第二种情况:TDNN-HMM混合模型,由于HMM能够处理可变长度表述问题,因而该模型能够有效地处理LVCSR问题。DFCNN的全称叫作全序列卷积神经网络(DeepFullyConvolutionalNeuralNetwork)。是由国内语音识别领域科大讯飞于2016年提出的一种语音识别框架。

    江西语音服务格式正确的数据可确保自定义语音服务识别对其进行准确处理。

    语音识别(SpeechRecognition)是以语音为研究对象,通过语音信号处理和模式识别让机器自动识别和理解人类的语音。除了传统语音识别技术之外,基于深度学习的语音识别技术也逐渐发展起来。本文对广义的自然语言处理应用领域之一的语音识别进行一次简单的技术综述。概述自动语音识别(AutomaticSpeechRecognition,ASR),也可以简称为语音识别。语音识别可以作为一种广义的自然语言处理技术,是用于人与人、人与机器进行更顺畅的交流的技术。语音识别目前已使用在生活的各个方面:手机端的语音识别技术,例如,苹果的siri;智能音箱助手,例如,阿里的天猫精灵,还有诸如一系列的智能语音产品等等。为了能够更加清晰的定义语音识别的任务,先来看一下语音识别的输入和输出都是什么。大家都知道,声音从本质是一种波,也就是声波,这种波可以作为一种信号来进行处理,所以语音识别的输入实际上就是一段随时间播放的信号序列,而输出则是一段文本序列。语音识别的输入与输出。语音识别的输入与输出将语音片段输入转化为文本输出的过程就是语音识别。一个完整的语音识别系统通常包括信息处理和特征提取、声学模型、语言模型和解码搜索四个模块。

  

    ForresterResearch在其对2021年的前列客户服务预测中指出,“随着移情成为中心舞台,语音将成为服务的渠道。”在2020年,Forrester的公司客户告诉分析师,那些因失业而需要修改公用事业、和其他关键服务支付计划的客户已经将通话量推高了50%。虽然交互式语音应答(IVR)系统通过语音识别技术的改进,在理解口语方面已经有了很大的进步,但传统的IVR系统笨重,自助自动化程度很低,高达80%的交互都交给了服务座席。当我与领导们谈论CX转型时,常被忽视的是语音技术在客户服务和销售中的作用。传统上,IVR是一个联络中心的面孔,绝大多数被用作决策树,将呼叫路由到合适的座席。相比之下,数字和消息传递技术不仅被用于通过聊天和消息传递将客户连接到联络中心座席,而且还通过会话式人工智能机器人驱动自动化。后者在一些公司引起了争论,要求删除电话号码,将部分或全部客户转移到信息渠道,通过自动化降低联络中心的成本。然而,期望客户从语音转向数字是不现实的。问题不在于如何让客户远离语音,而在于如何利用语音技术的进步与数字技术相结合,提高对口语的理解和处理能力,从而推动自助服务。根据[24],83%的公司计划在不久的将来将语音与数字渠道相结合。

     如何用语音服务去通知?

    则该模型将标记为“失败”。并非所有基础模型都支持使用音频数据进行训练。如果基础模型不支持它,则服务将忽略音频。并使用听录内容的文本进行训练。在这种情况下,训练将与使用相关文本进行的训练相同。有关支持使用音频数据进行训练的基础模型的列表,请参阅语言支持。用于训练的纯文本数据在识别产品名称或行业特定的术语时,可以使用域相关句子来提高准确性。可将句子作为单个文本文件提供。若要提高准确性,请使用较接近预期口头言语的文本数据。使用纯文本进行的训练通常在几分钟内完成。若要使用句子的自定义模型,需要提供示例言语表。言语不一定要是完整的或者语法正确的,但必须准确反映生产环境中预期的口头输入。如果想要增大某些字词的权重,可添加包含这些特定字词的多个句子。一般原则是,训练文本越接近生产环境中预期的实际文本,模型适应越有效。应在训练文本中包含要增强的行话和短语。如果可能,尽量将一个句子或关键字控制在单独的一行中。对于重要的关键字和短语(例如产品名),可以将其复制几次。但请记住,不要复制太多次,这可能会影响总体识别率。此外,还需要考虑以下限制:请避免将字符、单词或词组重复三次以上。

     语音服务文档识别语音、合成语音、获取实时翻译、听录对话,或将语音集成到机器人体验中。河南语音服务内容

语音服务为您提供多种功能产品,包含语音通知、语音验证码、语音互动、智能语音交互及智能语音外呼机器人。广西语音服务介绍

    进一步地,可以基于所获取的各个用户物联网受控设备信息集,确定与设备用户信息相对应的多个物联网受控设备信息。这里,在确定设备列表时,需要针对酒店a下的各个物联网主控设备分别进行操作,例如针对酒店a中各个房间内的主控音箱进行操作。并且,针对设备用户信息下的各个物联网主控设备可以进行如步骤420-步骤440的操作。在步骤420中,获取关于该物联网主控设备的区域配置请求,区域配置请求包括设备区域配置信息。示例性地,语音服务端接收到针对酒店a的其中一个主控音箱(例如,位于房间301的音箱)的区域配置请求,这个区域配置请求中包括设备区域配置信息“房间301”。在步骤430中,获取针对多个物联网受控设备信息中的至少一者的选择指令。示例性地,酒店管理人员可以对酒店a所对应的各个物联网受控设备信息针对“房间301”(即,区域配置信息)进行选择。在步骤440中,确定所选择的至少一个设备区域配置信息与区域配置请求中的设备区域配置信息是相对应的。示例性地,可以将酒店a下的各个物联网受控设备(例如,灯具、窗帘等)和主控设备针对设备区域配置信息进行配置。在步骤450中,基于各个物联网受控设备信息所对应的设备区域配置信息。广西语音服务介绍

信息来源于互联网 本站不为信息真实性负责