黑龙江自主可控语音服务

时间:2024年03月21日 来源:

    虽然5G网络均采用非组网架构,但在2020年,采用组网架构的5G网络将成为现实。成功完成业界新空口承载语音(VoNR)互操作性测试后,5G组网又向前迈进了一步。今年12月初,双方在坐落于希斯塔的实验室开展了上述互操作性测试,期间分别使用了端到端解决方案以及部署在。借助组网新空口(SANR),5G通信设备可在无需依赖4G技术的情况下进行5G语音通话。随着组网新空口接入的到来,5G网络需要能够提供语音和其他通信服务,因此5G网络需要能够为智能手机提供原生语音通话服务。通过使用组网架构上的新空口承载语音服务,运营商将能够在5G语音设备上提供语音服务,并向消费者和企业用户提供增强型移动宽带(eMBB)服务。5GRAN产品线负责人HannesEkström表示:“尽管5G数据传输能力密切相关,但语音服务对移动用户而言仍然至关重要。因此,除了全新的5G功能和服务外,5G手机还需要提供4G手机的所有功能。因此,必须在5G设备上继续提供既有的语音服务。借助多厂商之间的互操作性,我们能够帮助客户为5G组网提供语音支持。这表明我们完整的5G网络解决方案已经就绪,并且通过了与5G芯片组的测试。语音技术可以用来理解客户,而不考虑语法、口音或背景噪音。黑龙江自主可控语音服务

    所以在正式使用声学模型进行语音识别之前,我们必须对音频信号进行预处理和特征提取。初始的预处理工作就是静音切除,也叫语音检测(VoiceActivityDetection,VAD)或者语音边界检测。目的是从音频信号流里识别和消除长时间的静音片段,在截取出来的有效片段上进行后续处理会很大程度上降低静音片段带来的干扰。除此之外,还有许多其他的音频预处理技术,这里不展开多说。其次就是特征提取工作,音频信号中通常包含着非常丰富的特征参数,不同的特征向量表征着不同的声学意义,从音频信号中选择有效的音频表征的过程就是语音特征提取。常用的语音特征包括线性预测倒谱系数(LPCC)和梅尔频率倒谱系数(MFCC),其中LPCC特征是根据声管模型建立的特征参数,是对声道响应的特征表征。而MFCC特征是基于人的听觉特征提取出来的特征参数,是对人耳听觉的特征表征。所以,在对音频信号进行特征提取时通常使用MFCC特征。MFCC主要由预加重、分帧、加窗、快速傅里叶变换(FFT)、梅尔滤波器组、离散余弦变换几部分组成,其中FFT与梅尔滤波器组是MFCC重要的部分。是变换的简单示意,通过傅里叶变换将时域切换到频域。一个完整的MFCC算法包括如下几个步骤。。1)快速变换。

   江西新一代语音服务系统主要包含特征提取、声学模型,语言模型以及字典与解码四大部分。

    房间101、102等)内的能被控制的设备(例如,电灯,窗帘等)所对应的受控设备信息(例如,设备物理地址等)。在本实施例的一个示例中,可以在语音服务端存储了至少一个设备列表,从而可以本地确定针对该目标设备用户信息目标设备列表。在本实施例的另一示例中,语音服务端还可以从其他设备(例如,物联网运营端)来获取受控设备信息。步骤130、基于目标设备区域配置信息从目标设备列表中确定目标受控设备信息。例如,可以基于“房间101”来确定该房间中设备信息。步骤140、基于语音消息对目标受控设备信息所对应的目标物联网受控设备进行操控。具体地,可以确定语音消息所对应的语音控制意图信息(例如,关闭电灯),并根据语音控制意图信息来对目标受控设备信息所对应的目标物联网受控设备进行操控。在一些应用场景中,语音控制意图信息可以是对应语音消息的“关闭电灯”,而不需要用户说出“关闭xx房间的电灯”,就能够直接对(例如,xx房间)的电灯进行操作,提高了用户体验。在本实施例的一个示例中,可以是语音服务端对目标物联网受控设备直接进行控制。在本实施例的另一示例中,语音服务端还可以发送控制指令至中控设备(例如,运营服务端)。

    非异构计算的工程优化随着深度学习技术的进步,模型的建模能力越来越强大,随之而来的计算量需求也越来越高。近年来,很多公司都采用异构计算进行模型的inference,例如采用高性能或者inferenceGPU,甚至采用FPGA/ASIC这样的芯片技术来加速inference部分的计算,服务实际需求。对语音合成而言,大量的需求是需要进行实时计算的。例如,在交互场景上,语音合成服务的响应时间直接影响到用户的体验,往往需要从发起合成请求到返回语音包的时间在200ms左右,即首包latency。另一方面,很多场景的语音合成的请求量的变化是非常大的,例如小说和新闻播报场景,白天和傍晚的请求量往往较高,而深夜的请求量往往很低,这又对部署的便捷性和服务的快速扩展性带来了要求。我们仔细对比了不同的inference方案,考虑到我们终的使用场景要求,对快速扩展的要求,甚至客户不同机器的部署能力,我们终选择以非异构计算的形式进行inference计算,即不采用任何异构计算的模块,包括GPU/FPGA/ASIC等。 您知道如何订阅语音服务?

已经从一个创新型的技术变成了一个完整的解决方案,09年已经在工商银行电话银行中得到了应用,目前已经有众多行业企业开始应用该方案。用户来电进入语音导航系统,直接表达业务需求,如“我的手机里还有多少钱”,系统便可直接定位至话费查询节点,并通过语音合成技术动态播报用户话费信息。该应用主要依赖科大讯飞公司在人机交互领域持续积累的几个技术。1.语音服务识别技术–“人的耳朵”智能语音交互首先需要IVR系统能够听懂人说话,这就是需要语音识别技术,语音识别技术经历了几个发展阶段:命令词识别,需要客户准确说出业务名称才能识别;关键词识别,客户需要说出业务关键词;连续语音识别:识别可以自由表述需求,无需关注业务名称。语音导航应用的为连续语音识别技术,并基于国际先进的DBN技术。语音识别除了和技术相关,数据起的作用也很大,比如北京人和广东人表述“话费查询”,口音和表达方法都不完全相同,如果语音识别听过的数据越多,识别率就越高,科大讯飞产品已经对大多业务类型、口音特点和电话信道等进行了适配,识别率能够达到90%以上。2.语义理解技术—“人的大脑”听懂语音还不够,还需要理解其意思,例如我们听国外人唱歌,声音能听得出来。有关语音服务订阅的建议区域列表,请参阅设置Azure帐户。江西新一代语音服务

作为语音识别的前提与基础,语音信号的预处理过程至关重要。黑龙江自主可控语音服务

实现百万房间的问题。容易想到的方案是把100万用户分到5个SET里。那多个SET之间怎样通信呢?方法说白了就是为不同SET中的服务器提供一个全局视图,用于转发路由。方法有很多种,这里介绍2种思路。第一种是在房间服务器的上面再增加一个组服务器(groupserver),为系统提供全局视野。组服务器在每个SET的语音服务器中选取一台做为桥头堡机器(broker),跨SET转发和接收都通过broker完成。Broker收到SET内转发时,会将数据转发给其他SET的broker;而当收到跨SET转发时,会将数据转发给SET内的其他机器。这种方案的缺点是broker会成为瓶颈,当broker宕机时,严重的情况是造成其他SET无法提供服务。容灾策略一种是减少broker到组服务器的心跳间隔,使组服务器可以迅速发现异常并重新挑选broker;另一种方法是采用双broker,不过会增加数据去重的复杂度。第二种是在系统之外增加一个转发服务器,专门负责跨SET转发,当然它本身拥有全局视野。这种方案其实是把上面说的组服务和双broker结合在一起,把转发功能外化。对于跨SET房间,主播所在的语音服务器做SET内转发的同时将数据发给转发服务器,转发服务器根据房间信息将数据转发给其他SET的任意1台机器。这样优点非常明显。黑龙江自主可控语音服务

信息来源于互联网 本站不为信息真实性负责