重庆新一代语音服务
要实现这一点,语音技术必须与基于文本的技术无缝融合,以提供良好的客户体验。这使公司能够轻松地在数字和语音会话之间切换,并根据会话需要来回切换。会话人工智能的进展改变了游戏。在过去两年中,语音识别和会话人工智能的进步使下一代语音接口能够产生更自然和个性化的对话,并通过准确的意图发现实现更高水平的自助服务。有效实施会话人工智能意味着语音机器人可以为语音通话提供服务,而无需升级到座席,就像会话人工智能通过智能聊天机器人应用于商务信息,如苹果商务聊天(AppleBusinessChat)和谷歌商务信息(GoogleBusinessMessaging)一样。让我们更仔细地了解一下语音技术的一些进展,这些进展将使语音技术成为客户与公司互动的可靠方式:高级语音识别--在亚马逊、谷歌和微软的重大投资推动下,语音识别在过去几年取得了显着进步。通过的自然语言理解和深度神经网络语音识别,语音技术可以用来理解客户,而不考虑语法、口音或背景噪音。文本到语音--通过先进的文本到语音技术,公司可以创建和部署多语言和方言的类人、高质量提示,而不是每次想要做出改变时都必须雇用语音人才。这缩短了语音提示部署和更改的上市时间。
语音服务采用IP网络进行传输,淘汰基于GSM、UMTS和CDMA等网络的传统转换服务。重庆新一代语音服务
语音生物识别--呼叫验证技术可以标记可疑的入站呼叫,以在开始前阻止。此外,语音生物特征可用于通过简化的基于语音的身份验证来验证说话人。意图预测--当前IVR认可度如此之低的原因之一是,他们无法在呼叫前其他渠道的客户行程。这种了解和理解客户在线行为的能力对于实现更好的语音自助服务至关重要。通过使用人口统计和行为信息,公司可以利用这种意图来提供比较好的体验。多模式通话--随着智能手机的普及,可以将可视辅助设备与语音通话相结合。客户可以在智能手机上无缝、安全地输入或查看信息,以提高通话的准确性和安全性。这提高了平均处理时间和法规遵从性。会话生成器技术--新的低代码工具技术使非技术资源能够以与数字相同的方式快速构建语音对话旅程。这为公司提供了更大的灵活性和敏捷性来推出会话服务。为了充分利用语音技术进行数字化转型,公司必须确保技术完全集成到数据驱动的客户体验平台中。这意味着有能力发现意图,建立机器人的行动意图,与客户关系管理系统集成,以获取上下文,监测性能和优化自然语言模型,并报告这些行动的效果实时。公司开始将购买力转向首席客户官,他负责监督所有与客户有关的技术。一些具有前瞻性思维的公司意识到。新一代语音服务标准电话语音服务识别效果怎么样?
主要原因是定制菜单花费的时间太多,客户不太愿意使用。再如近几年提出的IVR优化,通过去除低频访问的业务,只保留高频业务,并安排呼叫频度决定业务所处的层架,这种方式会导致许多业务通过IVR无法办理,损伤了客户的体验。在移动互联网时代,“用户体验”重要性不言而喻,而竞争日益加剧的,“降低成本”是提升企业竞争力的关键。如何实现“鱼和熊掌兼得”?关键在于提升IVR的服务能力,通过菜单调整的方法终究是“治标不治本”,我们需要对IVR进行颠覆性的改变。智能语音服务技术的发展为IVR的发展注入了新的生机,以苹果“siri””为的手机智能语音服务助理的出现,标志智能语音技术发展达到了实用水平,在IVR中应用智能语音技术,用户无需按键,说出需求即可办理业务,非常符合人的使用习惯,同时完全摆脱了0-9按键个数的限制,大幅提升信息输入效率。一.智能语音服务在IVR中的业务模式我们对国内从事智能语音技术研发的领导企业“科大讯飞”进行了调研,智能语音在IVR中的应用是公司的重要产品方向之一,公司在06年开始尝试在IVR中的应用,提出“语音导航”的方案,为呼叫中心提供语音识别驱动的新型自动语音交互应用。
循环神经网络、LSTM、编码-解码框架、注意力机制等基于深度学习的声学模型将此前各项基于传统声学模型的识别案例错误率降低了一个层次,所以基于深度学习的语音识别技术也正在逐渐成为语音识别领域的技术。语音识别发展到如今,无论是基于传统声学模型的语音识别系统还是基于深度学习的识别系统,语音识别的各个模块都是分开优化的。但是语音识别本质上是一个序列识别问题,如果模型中的所有组件都能够联合优化,很可能会获取更好的识别准确度,因而端到端的自动语音识别是未来语音识别的一个重要的发展方向。所以,本文主要内容的介绍顺序就是先给大家介绍声波信号处理和特征提取等预处理技术,然后介绍GMM和HMM等传统的声学模型,其中重点解释语音识别的技术原理,之后后对基于深度学习的声学模型进行一个技术概览,对当前深度学习在语音识别领域的主要技术进行简单了解,对未来语音识别的发展方向——端到端的语音识别系统进行了解。信号处理与特征提取因为声波是一种信号,具体我们可以将其称为音频信号。原始的音频信号通常由于人类发声或者语音采集设备所带来的静音片段、混叠、噪声、高次谐波失真等因素,一定程度上会对语音信号质量产生影响。
GStreamer 会先解压缩音频,然后再将音频作为原始 PCM 通过网络发送到语音服务。
所以在正式使用声学模型进行语音识别之前,我们必须对音频信号进行预处理和特征提取。初始的预处理工作就是静音切除,也叫语音检测(VoiceActivityDetection,VAD)或者语音边界检测。目的是从音频信号流里识别和消除长时间的静音片段,在截取出来的有效片段上进行后续处理会很大程度上降低静音片段带来的干扰。除此之外,还有许多其他的音频预处理技术,这里不展开多说。其次就是特征提取工作,音频信号中通常包含着非常丰富的特征参数,不同的特征向量表征着不同的声学意义,从音频信号中选择有效的音频表征的过程就是语音特征提取。常用的语音特征包括线性预测倒谱系数(LPCC)和梅尔频率倒谱系数(MFCC),其中LPCC特征是根据声管模型建立的特征参数,是对声道响应的特征表征。而MFCC特征是基于人的听觉特征提取出来的特征参数,是对人耳听觉的特征表征。所以,在对音频信号进行特征提取时通常使用MFCC特征。MFCC主要由预加重、分帧、加窗、快速傅里叶变换(FFT)、梅尔滤波器组、离散余弦变换几部分组成,其中FFT与梅尔滤波器组是MFCC重要的部分。是变换的简单示意,通过傅里叶变换将时域切换到频域。一个完整的MFCC算法包括如下几个步骤。。1)快速变换。
了解自定义语音服务识别数据。江苏语音服务特征
在上传数据之前,系统会要求你为数据集选择语音服务数据类型。重庆新一代语音服务
ForresterResearch在其对2021年的前列客户服务预测中指出,“随着移情成为中心舞台,语音将成为服务的渠道。”在2020年,Forrester的公司客户告诉分析师,那些因失业而需要修改公用事业、和其他关键服务支付计划的客户已经将通话量推高了50%。虽然交互式语音应答(IVR)系统通过语音识别技术的改进,在理解口语方面已经有了很大的进步,但传统的IVR系统笨重,自助自动化程度很低,高达80%的交互都交给了服务座席。当我与领导们谈论CX转型时,常被忽视的是语音技术在客户服务和销售中的作用。传统上,IVR是一个联络中心的面孔,绝大多数被用作决策树,将呼叫路由到合适的座席。相比之下,数字和消息传递技术不仅被用于通过聊天和消息传递将客户连接到联络中心座席,而且还通过会话式人工智能机器人驱动自动化。后者在一些公司引起了争论,要求删除电话号码,将部分或全部客户转移到信息渠道,通过自动化降低联络中心的成本。然而,期望客户从语音转向数字是不现实的。问题不在于如何让客户远离语音,而在于如何利用语音技术的进步与数字技术相结合,提高对口语的理解和处理能力,从而推动自助服务。根据[24],83%的公司计划在不久的将来将语音与数字渠道相结合。
重庆新一代语音服务