江苏麦克风阵列是什么

时间:2022年07月02日 来源:

    对声信号m1(n)、m2(n)进行分帧与加窗之后,再进行时频变换即得到时频分布信号m1(l,k)和m2(l,k),其中:l和k分别是频率点和时间窗的序号;s2:因为同一个声源的声信号到达两个麦克风mic1、mic2的时间存在延迟,计算延迟系数t(l,k);s3:将所述延迟系数与所述目标声源的理想延迟时间δ1进行比较,确定所述目标声源的能量所占成分;s4:基于所述延迟系数与所述目标声源的理想延迟时间δ1的比较结果,计算m1(l,k)的掩蔽权重b(l,k),得到增强信号的时频分布表达式:s5:对目标声源对应的所述增强信号进行傅里叶反变换,然后利用重叠相加法,可以得到增强后的信号此时获得的信号中方向性的竞争语音噪声已经被抑制。其进一步特征在于:所述一级放大电路包括:放大器u1、电容c5、c6、c7、c8、电阻r5、r10,所述放大器u1的1脚连接所述电阻r10的一端,所述放大器u1的2脚连接所述电阻r10的另一端后接地,所述放大器u1的3脚和16脚分别连接所述电阻r5的两端,所述放大器u1的7脚、所述电容c8的负极、所述电容c6的一端连接后接入电源,所述电容c6的另一端、所述电容c5的一端连接后接地,所述放大器u1的8脚所述电容c7的正极、所述电容c5的另一端互相连接后接入电源。而且音频采集装置为4×12的麦克风阵列,单个麦克风为底部出孔的mems麦克风。江苏麦克风阵列是什么

    放大器u1的7脚、电容c8的负极、电容c6的一端连接后接入电源,电容c6的另一端、电容c5的一端连接后接地,放大器u1的8脚电容c7的正极、电容c5的另一端互相连接后接入电源,电容c7的负极连接电容c8的正极;本实施例中,一级放大电路选用具有低噪声系数,高线性度等优点的型号为ad624的仪表放大器芯片实现,该芯片是高分辨率信号采集系统的理想器件;其放大功能主要是在其rg1和rg2引脚串联一个电阻来调节电路的放大倍数,本实施例中的一级放大电路的放大倍数为10倍;麦克风阵列连接放大器u1的1脚,将采集的声信号输入到一级放大电路。面向前向麦克风mic1的带通滤波器的电路和二级放大电路包括:放大器u2、电阻r1~r4、r6~r9、电容c1~c4,放大器u2的1脚与电阻r1的一端、电阻r3的一端、电阻r6的一端互相连接,放大器u2的2脚连接电阻r1的另一端、电阻r2的一端,电阻r2的另一端接地,放大器u2的3脚连接电阻r4的一端、电容c3的一端,电阻r4的另一端接地,电容c3的另一端连接电阻r3的另一端、电容c2的一端,电容c2的另一端连接放大器u1的9脚、10脚,放大器u2的5脚连接电容c4的一端、电阻r7的一端,放大器u2的6脚连接电阻r8的一端、电阻r9的一端,电阻r8的另一端接地。湖北光纤数据麦克风阵列特征目前常用的麦克风阵列可以按布局形状分为:线性阵列,平面阵列,以及立体阵列。

    所述升压转换器u3的3脚、4脚连接后与所述电阻r11的一端、所述电阻r12的一端、所述电容c13的一端、所述电容c9的一端、所述电容c10的一端、所述电容c11的一端连接后接入到电源,所述升压转换器u3的5脚连接所述电阻r11的另一端,所述电容c9的另一端、所述电容c10的另一端、所述电容c11的另一端互相连接后接地;所述升压转换器u3的6脚连接所述电容c12的一端,所述电容c12的另一端连接所述电阻r13的一端后接地,所述升压转换器u3的7脚、所述电阻r13的另一端、所述电阻r12的另一端、所述电容c13的另一端互相连接,所述升压转换器u3的9脚、10脚、所述电容c14的一端、所述电容c15的正极、所述电容c16的一端、所述电感l2的一端、所述电感l1的另一端互相连接,所述电容c14的另一端、所述电容c15的负极、所述电容c16的另一端互相连接后接地,所述电感l2的另一端连接所述开关j2的3脚,所述开关j2的2脚连接所述插座j1的2脚,所述插座j1的1脚接地;所述稳压电源u4的1脚连接所述电容c19的一端后接入电源,所述稳压电源u4的2脚连接所述电容c19的另一端后接地,所述稳压电源u4的3脚连接所述电容c20的一端后接入电源,所述稳压电源u4的4脚连接所述电容c21的一端后接入电源。

    基于双麦克阵列的产品生态构建更具优势麦克风阵列作为实现智能语音的必备硬件,可以说是人工智能感知的硬件基础。因此,麦克风阵列的布局,将深深影响人工智能产品的生态布局。首先,众所周知的是,谷歌是以生态见长的公司。比如,Android构建了整个移动互联网的生态基础。在谷歌从移动互联网向AI转型的时候,提出了“AIFirst”的口号,并推出了开源深度学习系统TensorFlow,这个系统被认为是人工智能领域的Android。那么,谷歌为什么在如此重视AI战略的时候,推出这款GoogleHome的智能家居产品,并且采用双麦克的方案呢?相信对于谷歌这样的公司,成本和技术绝不会是阻碍他们采用更好技术的原因。据业内人士分析,关键的就是上面提到的的适用性和落地的便捷性,可能让谷歌后选择了双麦克方案。谷歌布局整个智能硬件产业链,而非只打造一款爆款产品。现在做GoogleHome智能音响,以后也可能做电视、汽车等等,所以在软硬件选择上都会考虑更通用、更长远的方案。多麦克阵列对外观和结构的严苛要求,使得该方案的应用场景极为有限,不具备的适用性,以Google的远大抱负,显然会选择适应性更强的双麦克方案。目前,谷歌明确表示会部分开放对接的子系统。立体阵列麦克风(3-DMicrophoneArray)真正实现全空间360度无损拾音解决了平面阵高俯仰角信号响应差的问题。

    能够保证近场环境下的语音识别率,而且成本要低很多。至于单麦语音识别的效果,可以体验下采用单麦识别算法的360儿童机器人。但是若想更好地去除部分噪声,可以选用2麦方案,但是这种方案比较折衷,主要优点就是ID设计简单,在通话模式(也就是给人听)情况下可以去除某个范围内的噪音。但是语音识别(也就是给机器听)的效果和单麦的效果却没有实质区别,成本相对也比较高,若再考虑语音交互终端必要的回声抵消功能,成本还要上升不少。2麦方案大的弊端还是声源定位的能力太差,因此大多是用在手机和耳机等设备上实现通话降噪的效果。这种降噪效果可以采用一个指向性麦克风(比如会议话筒)来模拟,这实际上就是2麦的Endfire结构,也就是1个麦克风通过原理设计模拟了2个麦克风的功能。指向性麦克风的不方便之处就是ID设计需要前后两个开孔,这很麻烦,例如叮咚1代音箱采用的就是这种指向性麦克风方案,因此采用了周边一圈的悬空设计。若希望产品能适应更多用户场景,则可以类似亚马逊Echo一样直接选用4麦以上的麦克风阵列。这里简单给个参考,机器人一般4个麦克风就够了,音箱建议还是选用6个以上麦克风,至于汽车领域,好是选用其他结构形式的麦克风阵列。平面麦克风阵列实现平面360度等效拾音麦克风越多,语音增强和降噪效果越好用于智能音箱和交互机器人上。湖北光纤数据麦克风阵列特征

针对在真实室内环境中,麦克风阵列与说话人(声源)之间存在干扰的情况下,声源定位能力不足的实际问题。江苏麦克风阵列是什么

    这两者的区别就是回声的时延更长。一般来说,超过100毫秒时延的混响,人类能够明显区分出,似乎一个声音同时出现了两次,我们就叫做回声,比如天坛着名的回声壁。实际上,这里所指的是语音交互设备自己发出的声音,比如Echo音箱,当播放歌曲的时候若叫Alexa,这时候麦克风阵列实际上采集了正在播放的音乐和用户所叫的Alexa声音,显然语音识别无法识别这两类声音。回声抵消就是要去掉其中的音乐信息而只保留用户的人声,之所以叫回声抵消,只是延续大家的习惯而已,其实是不恰当的。声源测向:这里没有用声源定位,测向和定位是不太一样的,而消费级麦克风阵列做到测向就可以了,没必要在这方面投入太多成本。声源测向的主要作用就是侦测到与之对话人类的声音以便后续的波束形成。声源测向可以基于能量方法,也可以基于谱估计,阵列也常用TDOA技术。声源测向一般在语音唤醒阶段实现,VAD技术其实就可以包含到这个范畴,也是未来功耗降低的关键研究内容。波束形成:波束形成是通用的信号处理方法,这里是指将一定几何结构排列的麦克风阵列的各麦克风输出信号经过处理(例如加权、时延、求和等)形成空间指向性的方法。波束形成主要是抑制主瓣以外的声音干扰,这里也包括人声。江苏麦克风阵列是什么

信息来源于互联网 本站不为信息真实性负责