广东电视声学回声分析

时间:2022年08月20日 来源:

    这样会带来一个新的问题:按照Widrow的自适应滤波理论,滤波器的长度越长,其收敛速度越慢,同时权噪声越大,进而导致强混响下回声消除不够理想。第二个问题是延时跳变问题。在实时音视频通话领域,延时跳变是一个比较普遍的问题。主要现象是麦克端采集的信号和回声参考信号之间的时延关系会发生跳变,每次跳变之后就需要重新对齐信号,就会漏一些回声出来。第三个问题是啸叫问题。啸叫的检测和啸叫的抑制是公认的在回声领域的经典难题。还有双讲问题。双讲是评估回声消除算法性能的一个重要指标,当然也是很难处理的一个问题,因为双讲很容易导致滤波器系数发散。综合以上这些维度我们可以看到,非线性的声学回声消除是一个很有挑战的研究方向。双耦合声学回声消除算法这个是我们团队提出来的一种算法,它的主要特点是,在构建滤波器模型的过程中结合了非线性声学回声的一些特性,因此它在抑制非线性回声方面,也体现出固有的优势。1.非线性声学回声系统建模,继续回到前面的这个声学回声路径。我们对这个模型进行了简化。我们将左边的喇叭端用一个传递函数Wn来表示,假设它的是非线性的回声路径传递函数;同时我们将喇叭右边,就是麦克端,统一用Wl来表示。

    深入浅出 WebRTC AEC(声学回声消除)。广东电视声学回声分析

    达到,接近于1。黄色曲线,对应的数据具有比较弱的非线性失真,所以在时间T变大了之后,短期相关度逐渐降低,趋于一个相对平稳的值。而红色曲线是我们选的一条具有强非线性失真的数据,为了对这三组数据进行有效对比,我们还给出了一条蓝色曲线,这条曲线是信号与噪声的短时相关度,它在整个时间T范围内都很小。通过这样一组曲线的对比,会得到两个结论,个结论就是我们构建的短时相关度函数,能够相对客观反映这个声学系统的线性度特征,线性度越好,这个值会越大。第二个结论:对于非线性失真很强的系统,其在短时观测窗内(如T<100ms)依然具有较强的相关度,这从红色的曲线可以看出来。也正是基于这样的特征,我们接下来就构建了一种新的误差函数,称之为“短时累积误差函数”。大家可以注意到我们在一个观测时间窗T内,对残差进行了累积。基于这样的误差函数,我们进一步构建了一种新的优化准则,称为“小平均短时累计误差准则”。我们希望通过优化准则的约束,得到的滤波器权系数能够满足两个特性,个特性是滤波器在统计意义上能够达到比较好,即全局比较好,因此我们在目标函数里加入了数学期望运算。同时。

     上海录播声学回声私人定做回声消除AEC(AcousticEchoCancellation)一般指的是声学回声消除,其主要用于抑制产品本身发出的声音。

    首先这里的A和D比较好判断,他们都属于线性时不变系统。比较难判断的是C,因为在一些比较复杂的场景下,声学回声往往会经过多个不同路径的多次反射之后到达接收端,同时会带有很强的混响,甚至在更极端情况下,喇叭与麦克风之间还会产生相对位移变化,导致回声路径也会随时间快速变化。这么多因素叠加在一起,往往会导致回声消除算法的性能急剧退化,甚至完全失效。有同学可能会问,难道这么复杂的情况,不是非线性的吗?我认为C应该是一个线性时变的声学系统,因为我们区分线性跟非线性的主要依据是叠加原理,前面提到的这些复杂场景,它们依然是满足叠加原理的,所以C是线性系统。这里还要再补充一点,细心的朋友会发现B里面有一个功率放大器,同时在C里面也有一个功率放大器,为什么经B的功率放大器放大之后,可能带来非线性失真,而C的功率放大器不会产生非线性失真呢?二者的主要区别在于B放大之后输出是一个大信号,用来驱动喇叭。而C放大之后输出依然是小信号,通常不会产生非线性的失真。2.非线性声学回声产生的原因.非线性声学回声产生的原因,我一共列了两条原因。原因之一,声学器件的小型化与廉价化,这里所指的声学器件就是前面B里面提到的功率放大器和喇叭。

    

    需要注意的是,如果index在滤波器阶数两端疯狂试探,只能说明当前给到线性部分的远近端延时较小或过大,此时滤波器效果是不稳定的,需要借助固定延时调整或大延时调整使index处于一个比较理想的位置。线性部分算法是可以看作是一个固定步长的NLMS算法,具体细节大家可以结合源码走读,本节重点讲解线型滤波在整个框架中的作用。从个人理解来看,线性部分的目的就是很大程度的消除线性回声,为远近端帧判别的时候,很大程度地保证了信号之间的相干值(0~1之间,值越大相干性越大)的可靠性。我们记消除线性回声之后的信号为估计的回声信号e(n),e(n)=s(n)+y''(n)+v(n),其中y''(n)为非线性回声信号,记y'(n)为线性回声,y(n)=y'(n)+y''(n)。相干性的计算(Matlab代码),两个实验(1)计算近端信号d(n)与远端参考信号x(n)的相关性cohdx,理论上远端回声信号的相干性应该更接近0(为了方便后续对比,WebRTC做了反向处理:1-cohdx),如图5(a),行为计算近端信号d(n),第二行为远端参考信号x(n),第三行为二者相干性曲线:1-cohdx,会发现回声部分相干值有明显起伏,比较大值有,近端部分整体接近,但是有持续波动,如果想通过一条固定的门限去区分远近端帧,会存在不同程度的误判。

     非线性的声学回声消除问题。

    26.声聚焦指凹面对声波形成集中反射、使反射声聚集于某个区域,造成声音在该区域特别响的现象。声聚集造成声能过分集中,使声能汇聚点的声音嘈杂,而其他区域听音条件变差,扩大了声场不均匀度,严重影响听众的听音条件。27.声影区由于障碍物或折射的原因,产生声音辐射不到的区域。在声影区内声压级很低,音量很轻。因此声影区的存在也是声压不均匀的原因。28.声染色由于室内频率响应的变化,使原始声音被赋予外加的音色特点。容积小的听音室,本征频率在低频端分布不够密集连续,因此在低频段易产生“共振”的音染现象。共振现象产生的声染色效应,引起声音信号的失真,产生主观听感上的厌恶情绪,严重影响听音效果。29.声闸(声锁)两道门之间保留较大的间距做成通常所称的“门斗”,并对其内表面做强吸声处理,以提高隔声效果,此“门斗”称为声闸(声锁).30.声桥材料直接固定在龙骨上时,受声一侧板的振动会通过龙骨传到另一侧板,这种象桥一样传递声能的现象被称为声桥。31.浮筑结构(房中房)通常只有外部环境很差或声学环境要求较高的情况下才会考虑浮筑结构,即在原房间中再建一个房间(即内套和外套)。分轻质和重质两种。内套和外套之间设置弹性垫层。

    推出的双耦合的声学回声消除算法以及实验检验结果。广东电视声学回声分析

声学回声的原理是什么?广东电视声学回声分析

    TWS耳机异音,底噪,回声测试难点,TWS耳机市场一直在迅猛发展和壮大,逐步提升在整个耳机市场中的份额,无论是坐公交,乘地铁,漫步,还是居家娱乐,都能看到TWS耳机的魅影。换个角度讲,TWS耳机正在融入人们的生活。与此同时,习惯了TWS的用户对于TWS耳机也有着更高的要求,比如音质,降噪,更好的无线连接,防水,续航,轻便,舒适等。近期市场调查反馈得知,消费者普遍把音质作为选购TWS耳机的首要指标。其中消费者直观感受到的几项指标,在生产环节又容易忽略及不易测试出来的。测试员在听音时因工厂环境原因也难以分辨出来,但在实际使用过程中又很容易发现的不良,造成客户投诉及批量退货。这就是异(常)音,底噪和回声问题。下面我们基于这三者的表象,原因以及测量方法做些介绍。一、耳机异(常)音异(常)音泛指耳机喇叭漏气、杂音、振音等非正常音。其产生原因大概有以下几项:1、喇叭音圈问题,如变形、散线、未对齐、尾部卷起大振幅时音圈碰擦到T铁或华司等。2、喇叭磁隙问题,有摩擦或松散微粒。3、喇叭振膜问题,脱胶,喇叭振膜边缘与钢架胶粘处分离,或振膜表面破损。4、耳机电气及悬挂系统的缺陷,导致干扰附加音。异常音之所以难测试。

     广东电视声学回声分析

深圳鱼亮科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在广东省等地区的通信产品行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**深圳鱼亮科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!

信息来源于互联网 本站不为信息真实性负责