数据资产商业化
羽山数据资产交易平台是由羽山数据创新技术团队于2023年11月推出的,旨在解决数据资产确权难、计价难、增值难等一系列问题,推动企业数据资产化的进程。该平台以数据隐私计算模块为安全保障,以数据交易计费模块为中心引擎,通过数据产品管理DPM模块,使用无代码发布、API编排引擎功能,将企业数据资源高效转化为数据产品,快速对接众多数据交易所及数商。通过五大模块的运作,羽山数据资产交易平台可以帮助企业实现数据标准化、数据贸易化、数据资产化,为企业的发展提供有力支持。数据确权对数据交易有何影响?数据资产商业化
数据资产入表的战略意义数据资产入表不仅是企业财务和会计管理的一部分,更是企业战略的重要组成。羽山数据的数据资产入表解决方案覆盖了从数据合规、安全评估、数据治理、资产评估、数据交易到Z终的数据资本化等全流程,结合链合体各成员单位的能力优势,实现了数据资产的内外循环。羽山数据将基于数据全生命周期管理,提供数据治理、数据资产盘点及数据分类分级等入表前期必要的准备工作,并由专业技术团队各项隐私保护算法保护系统的连接性和流通性,为数据资产入表提供坚实的支撑。 数据资产计量数据确权需要加强数据管理和监管的力度。
数字资产将成为人类比较大的资产,而数字经济的进程将带来人类***次推动物理、精神、认知三元世界结构数字融合的这么一个深远的历史变革和社会变革。资产作为经济主体(**、企事业单位等)由过去的经济业务或者事项形成,由经济主体控制的,预期能带来经济利益流入或产生服务潜力的经济资源。资产的三大构成要素包括经济价值、价值可计量、所有权。资产具有以下几个方面的特征:①资产预期会给经济主体带来经济利益或产生服务潜力:②资产应为经济主体拥有或控制的资源;③资产是由经济主体过去的交易或者事项形成的。资产作为经济的**组成,一种资产类别的出现是有经济社会发展背景。数字资产概念的形成与技术发展、经济社会进步相吻合。
数据资产管理是一项系统化、全面性的工作,涉及到数据的整个生命周期。数据资产是指企业或组织在业务运营、管理活动中积累、产生的数据,包括结构化数据、非结构化数据等。数据资产具有极高的价值,可为企业提供决策支持、提升运营效率、驱动业务创新。涉及对数据资产的规划、组织、控制和利用,目的是确保数据资产的安全性、可靠性、一致性和完整性。这需要采用一系列的管理方式,如制定数据标准、建立数据治理体系、实施数据安全策略等。为确保数据资产的安全,保护措施同样必不可少。企业需建立完善的数据备份恢复机制、实施数据加密存储等措施,以防止数据丢失和未经授权的访问。同时,定期开展数据安全审计和风险评估,及时发现和解决潜在的安全隐患。数据确权为社会创新提供了丰富的数据资源。
随着数字经济的蓬勃发展,数据资产的研究和实践受到越来越多的重视。“数据资产”一词在1974年就已出现,随后在1977年出现“信息资产”一词,而“数字资产”一词则出现在1996年。针对这3个术语的较有代表性的定义出现的先后顺序是:信息资产(1994年)、数字资产(2006年)、数据资产(2013年)。2018年,朱扬勇、叶雅珍将它们统一为数据资产。但数据资产仍然停留在概念上,其进入会计报表仍然存在很多问题和困难,如数据资产如何计量计价、数据资产属于无形资产还是有形资产、归属于何种会计科目等问题都尚待解决。在实践中,数据还未被当作一类资产,难以进入会计报表。大数据兴起后,人们认识到数据是数字经济的关键要素并且要参与分配。因此,如何将数据资源资产化并加入会计报表和流通领域是亟待解决的问题。资产是一个经济学术语,是指由会计主体(企事业单位等)的过去的交易或事项形成的、由会计主体拥有或者控制的、预期会给会计主体带来经济利益或产生服务潜力的经济资源。数据资产可以由交易或事项2种方式形成。如何建立健全数据确权制度?数据入表变现
数据确权有助于推动跨行业的数据融合和创新。数据资产商业化
数据资产是指拥有数据权属(数据产品经营权、数据加工使用权、数据资源持有权)、有价值、可计量、可读取的网络空间中的数据集。根据定义,一个数据集被认定为一个企业的数据资产,需要满足4个必要条件:企业拥有这一数据集的数据权属;数据集是有价值的;数据集成本或价值应该能够被可靠地计量;数据集必须是可机读的。显然,对于一个企业来说,将一个数据资源转化为数据资产时,数据集有价值、可机读这2个必要条件是容易被甄别和实现的,数据资产化的难点在于对数据权属和可计量这2个条件的甄别和实现。数据资产商业化
上一篇: 企业数据资产入表托管服务
下一篇: 如何统一数据标准