高效厌氧反应器方案

时间:2023年08月05日 来源:

内循环厌氧反应器(IC反应器)的优点:

(1)容积负荷较高IC反应器的容积负荷在中温条件下可达到20kgCOD/(m³·d)左右,在高温条件下可达到30kgCOD/(m³·d)左右,是UASB和EGSB的1~2倍,是絮状污泥反应器的2~4倍。

(2)由于IC反应器的传质性能好,有机物在较短时期内便能得到较充分的消化,与其他反应器相比,在同样的厌氧消化周期内,IC反应器的COD去除率更高些。

(3)厌氧出水中菌体污泥的含量少IC反应器的菌体污泥多以颗粒污泥的形式存在。由于颗粒污泥不容易流失,进入厌氧出水中的菌体污泥的含量较少。

(4)由于IC反应器存在内循环,提升了下反应室的水力负荷。上升流速的增大也有利于颗粒污泥的形成与生长。

(5)颗粒污泥不容易流失IC反应器具有一个产气负荷较低的区域,即上反应室。这一区域的存在,十分有利于颗粒污泥的沉降与滞留。在上反应室中,不容易出现全混合态污泥床,颗粒污泥不容易流失,为下反应室颗粒污泥床的过度膨胀预留了充足的接纳空间。

(6)更适合于处理较低浓度的有机废水IC反应器的容积负荷高、水力停留时间短、进水量大,因此更适合处理较低浓度的有机废水。

(7)反应器故障少,操作更为简便IC反应器进水管少、出水孔径大,不容易出现堵塞。 IC厌氧反应器由5个基本部分组成。高效厌氧反应器方案

厌氧反应器

厌氧反应器处理的四个阶段:即厌氧消化过程分为水解阶段、酸化阶段、产乙酸产氢阶段、产甲烷阶段四个部分。水解阶段:微生物菌体分泌胞外水解酶,将碳氢化合物、脂肪和蛋白质转化为单糖、氨基酸和长链脂肪酸(LCFA);酸化阶段:水解阶段的产物在酸化微生物菌群的作用下降解为戊酸、丁酸、丙酸、乙酸、二氧化碳和氢;产乙酸产氢阶段,功能微生物菌群将戊酸等转化为甲烷细菌可以直接利用的基质-乙酸、二氧化碳和氢;在的产甲烷阶段,产甲烷细菌将乙酸、氢与二氧化碳转化为甲烷和二氧化碳,并伴随着微生物的生长与衰亡,在此同时,系统内的硫酸盐或硝酸盐在硫酸盐还原菌或反硝化菌的作用下,以乙酸或氢作为电子供体,被还原成硫化氢或氮气。高效厌氧反应器方案ECAR充分利用了厌氧颗粒污泥技术。

高效厌氧反应器方案,厌氧反应器

颗粒污泥形成学说:(1)晶核说:Lettinga认为,在厌氧污泥中存在无机盐构成的晶核,例如不溶性的CaCO3就是其中的一种。微生物围绕着这个晶核逐渐成长为颗粒污泥。(2)电荷中和说:细菌细胞的表面带负电荷,在金属正离子的作用下,细菌表面的负电荷被中和。由于减少了同性电荷之间的静电斥力,使得细菌能够互相凝聚成团,形成颗粒污泥。(3)胞外多聚物说:该学说是Wiegant在1987年提出的,主要论点可以归纳为以下几点:①废水中存在甲烷八叠球菌和甲烷丝菌,他们在生长过程中具有自然聚集成核的现象,还具有附着在其他颗粒物表面的能力。聚集与黏附的能力可以导致比较初的颗粒污泥核的形成。②颗粒污泥核的形成过程始终伴随着水力负荷和产气负荷的作用,水力负荷和产气负荷这两种作用力之和称为选择压。③由选择压引起的运动能产生剪切力,使密度较大的污泥核转化成球状的颗粒污泥。④选择压上升到一定程度时,会把絮状污泥洗出厌氧反应器。絮状污泥从反应器中被洗出的过程称为水力分级或水力筛选作用。⑤质子移位-脱水说:该学说是Tay等在2000年提出的,该学说认为,污泥颗粒化可分为细菌表面脱水、颗粒核形成、颗粒成熟及颗粒后成熟4个阶段。

影响厌氧反应器COD去除率的主要因素:

(1)废水的性质。COD去除率主要是取决于废水的性质而与厌氧反应器的类型没有必然的联系。废水的性质不同,有机物降解的难易程度不同,COD的去除率因此而有很大的不同。例如,柠檬酸废水、糖蜜酒精废水和酵母废水都采用IC反应器进行处理,它们的COD去除率分别为80%、65%和55%。

(2)废水在反应器中的停留时间(HRT)适当延长废水在反应器中的停留时间,有利于提高COD的去除率。不同的有机物降解的难易程度不同,厌氧消化周期长短不一,需要一定的水力停留时间,才能保证充分的消化,获得较高的COD去除率。

(3)反应器的传质性能传质性能好的反应器,有机物的去除速率更快,在更短的时间内,能获得更好的COD去除效果。在厌氧反应器中所获得的有机物COD的去除率,并不总是由微生物的分解所引起的。有些有机物,如SS在反应器中会发生沉淀或被污泥所吸附,以这种方式去除的COD是非生物性的,不是通过厌氧消化而去除的COD。 在多池并联的运行系统中,各个反应器可以按序列进水。

高效厌氧反应器方案,厌氧反应器

厌氧消化微生物所需的微量元素:

厌氧消化微生物需要多种的微量元素,尤其是铁、镍、钴、钼、镁等。所有的产甲烷菌均需要Fe、Ni和Co。

产甲烷菌对Fe的需要量较大,吸收率也较高,为1~3mg/g细胞干重。因此培养基中Fe的浓度要维持在0.3~0.8mmol/L。

镍(Ni)是产甲烷菌中辅酶F的重要成分,Ni的吸收率为17~180μm/g细胞干重。

生物合成时需要大量的钴(Co),Co的吸收率为10~120μm/g细胞干重。

钼(Mo)能刺激嗜热自养甲烷杆菌和巴氏甲烷八叠球菌的生长。

有些产甲烷菌需要较高浓度的镁(Mg)。

产甲烷菌对微量元素的要求比其他厌氧消化细菌更为敏感,缺乏微量元素对厌氧处理的影响要甚过对好氧处理的影响。 典型的ASBR运行周期包括四个阶段。广东三仓式厌氧反应器哪家好

IC PLUS厌氧反应器容积负荷高。高效厌氧反应器方案

硫化物对厌氧系统的毒性:①未离解的H2S对厌氧消化微生物的毒性比较大,其中的产甲烷菌对硫化氢尤为敏感。原因可能在于H2S能自由透过细胞膜与细胞内细胞色素中的铁和含铁物质相结合,使电子传递体丧失活性,代谢受阻。②沼气气相中的H2S与溶于厌氧消化液中的H2S呈平衡状态。③亚硫酸对厌氧硝化细菌的抑制浓度为50-100mg/L,其毒性有时超过H2S。④厌氧硝化细菌对硫酸盐的耐受程度较高,硫酸盐的抑制浓度为3000-5000mg/L,甚至可以更高。⑤硫酸盐对厌氧消化的抑制作用与废水的COD浓度有关。高效厌氧反应器方案

上海碧州环保能源科技有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在上海市等地区的环保中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,上海碧州环保能源科技供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!

信息来源于互联网 本站不为信息真实性负责