安徽外循环厌氧反应器三相分离

时间:2023年09月24日 来源:

技术咨询与设计服务经验丰富的工艺**和技术团队为客户量身定制工艺技术方案并提供环保工艺技术、工程技术的咨询服务提供交钥匙工程服务环保工程初步设计和详细设计采购、调试、安装及项目管理碧州服务环保设备提供提供环保设备设计、制造和供货服务,帮助客户选择工艺适用性强、性价比高的工程配套设备专业化日常运营和管理服务专业的技术服务团队,先进的环保装置运营和管理理念,为客户提供日常运营和管理服务。欢迎致电我们咨询。完全混合厌氧反应器池体体积较大,负荷较低,其污泥停留时间等于水力停留时间。安徽外循环厌氧反应器三相分离

厌氧反应器

厌氧反应器进水管堵塞疏通方法:

如果进水中具有固形物、悬浮物或其他杂质,有可能会造成进水管的堵塞。通过触摸反应器外部与进水分配相连的进水管,感受进水管温度上的差异,可以判断是哪根进水管被堵塞。若发现有堵塞现象,疏通方法有2种:

①使被堵塞水管的阀门呈开启状态,同时关闭所有其他未堵塞水管上的阀门,利用进水压力进行疏通。

②关闭未堵塞水管的阀门,同时使被堵水管的阀门呈开启状态,再打开进水分配器上的底阀(排渣阀),利用厌氧反应器内的液压,对被堵管路进行反冲洗,因喷嘴呈锥形,堵塞物易于冲走。 长沙高负荷厌氧反应器价格IC PLUS厌氧反应器启动周期短。

安徽外循环厌氧反应器三相分离,厌氧反应器

传统膨胀颗粒污泥床反应器(EGSB)的性能概述:EGSB 是在UASB 反应器的结构相似,所不同的是在EGSB 反应器中采用相当高的上流速度,因此,在EGSB 反应器中颗粒污泥处于完全或部分“膨胀化”的状态,即污泥床的体积由于颗粒之间的平均距离的增加而扩大。为了提高上升速度,EGSB 反应器采用较大的高度与直径比和很大的回流比。在高速上升速度和产气的搅拌作用下,废水与颗粒污泥间的接触更充分,因此可允许废水在反应器中有很短的水力停留时间,从而EGSB 可以高速地处理浓度较低的有机废水。碧州EGSB Plus既可以运行颗粒污泥又可以运行絮状污泥。

影响厌氧反应器COD去除率的主要因素:

(1)废水的性质。COD去除率主要是取决于废水的性质而与厌氧反应器的类型没有必然的联系。废水的性质不同,有机物降解的难易程度不同,COD的去除率因此而有很大的不同。例如,柠檬酸废水、糖蜜酒精废水和酵母废水都采用IC反应器进行处理,它们的COD去除率分别为80%、65%和55%。

(2)废水在反应器中的停留时间(HRT)适当延长废水在反应器中的停留时间,有利于提高COD的去除率。不同的有机物降解的难易程度不同,厌氧消化周期长短不一,需要一定的水力停留时间,才能保证充分的消化,获得较高的COD去除率。

(3)反应器的传质性能传质性能好的反应器,有机物的去除速率更快,在更短的时间内,能获得更好的COD去除效果。在厌氧反应器中所获得的有机物COD的去除率,并不总是由微生物的分解所引起的。有些有机物,如SS在反应器中会发生沉淀或被污泥所吸附,以这种方式去除的COD是非生物性的,不是通过厌氧消化而去除的COD。 ABR厌氧反应器运行稳定,操作灵活。

安徽外循环厌氧反应器三相分离,厌氧反应器

厌氧反应器内的碱度自然平衡:

在正常的消化过程中,厌氧系统本身具有一定的缓冲能力,能使得pH自然稳定在6.5~7.5之间。这种缓冲能力来自于厌氧消化液自身的酸碱平衡体系和碱度。

厌氧反应器的pH由CO2、NH3、H2S在气液两相间的溶解平衡和脂肪酸在液相内的酸碱平衡以及固液相的离子溶解平衡等综合作用的结果。

厌氧反应器中大量产生的CO2溶解在发酵液中产生电离,产生HCO3-。CO2产生的碱度对发酵液的PH的波动和变化能起到缓冲作用。

碱度通常以CaCO3(mg/L)计,当发酵液内的碱度为2000~5000mg/L时,缓冲能力较强。当碱度<1000mg/L时,缓冲能力较差。 EGSB 可以高速地处理浓度较低的有机废水。长沙高负荷厌氧反应器价格

UBF反应器是有UASB和AF结构的复合式反应器。安徽外循环厌氧反应器三相分离

厌氧消化微生物所需的微量元素:

厌氧消化微生物需要多种的微量元素,尤其是铁、镍、钴、钼、镁等。所有的产甲烷菌均需要Fe、Ni和Co。

产甲烷菌对Fe的需要量较大,吸收率也较高,为1~3mg/g细胞干重。因此培养基中Fe的浓度要维持在0.3~0.8mmol/L。

镍(Ni)是产甲烷菌中辅酶F的重要成分,Ni的吸收率为17~180μm/g细胞干重。

生物合成时需要大量的钴(Co),Co的吸收率为10~120μm/g细胞干重。

钼(Mo)能刺激嗜热自养甲烷杆菌和巴氏甲烷八叠球菌的生长。

有些产甲烷菌需要较高浓度的镁(Mg)。

产甲烷菌对微量元素的要求比其他厌氧消化细菌更为敏感,缺乏微量元素对厌氧处理的影响要甚过对好氧处理的影响。 安徽外循环厌氧反应器三相分离

信息来源于互联网 本站不为信息真实性负责