安徽CSTR厌氧反应器技术指导

时间:2023年11月21日 来源:

厌氧反应器膨胀污泥床:

根据污泥床膨胀程度可以把污泥床区分为3种形态:静止态、膨胀态和全混合态。

1、静止态污泥床是在反应器尚未运行的情况下形成的。当反应器没有进水、没有沼气产生时,厌氧污泥会全部沉淀在反应器的下底部,成为静止态污泥床。静止态污泥床的特点是:厌氧污泥在反应器中处于静止的状态;厌氧污泥与发酵液有着清晰的界面;污泥床中各处的污泥浓度大致是均衡的。利用静止态污泥床可以较为准确地测出反应器中污泥的总量、污泥浓度及污泥负荷。

2、反应器在运行过程中,在进水水力的推动和沼气气泡的搅动下,污泥床体积增大,这一现象称为污泥床膨胀,形成膨胀态污泥床。膨胀态污泥床中的污泥浓度是不均等的,从上至下存在一个由小到大的污泥浓度梯度。上部为污泥悬浮层,污泥浓度较低;中部的污泥浓度较高;下部的污泥浓度比较高,密度也较大。

3、膨胀态污泥床形成后,如果继续提高反应器的容积负荷,随着进水量和沼气产量的不断增加,进水水力和沼气对污泥的搅动强度随之增加。膨胀态污泥床中污泥浓度梯度会越来越小,当水力负荷与产气负荷增大到一定程度时,污泥浓度梯度会完全消失,污泥床中任何一处的污泥浓度都是相同的,此时的污泥床便转变成全混合态。 通过厌氧反应器的处理,能够消化有机物质,提取沼气等可再生能源,同时产生有机肥料。安徽CSTR厌氧反应器技术指导

厌氧反应器

无机盐对厌氧系统的毒性:①钠盐;Na+对厌氧消化的抑制浓度在5000-10000mg/L的范围内,高浓度的Na+可能会使细菌失去产生胞外多聚物的能力,不能产生凝集作用,细菌呈分散状态,影响到颗粒污泥的形成。盐离子浓度过高还会使细胞失去水分。但Na+的毒性是可逆的。②钙盐;钙离子会对某些产甲烷菌的生长和颗粒污泥的形成至关重要,但过多的钙盐会降低产甲烷菌和颗粒污泥的活性,并造成营养成分的损失,除此之外钙盐太多还会形成钙盐沉淀与结垢,造成厌氧系统的缓冲能力下降。③铝盐;废水中的铝盐会粘附在细胞膜上,影响微生物的生长和颗粒污泥产甲烷的活性。④镁盐;适当的镁离子能够增强厌氧颗粒污泥的沉降性能,颗粒污泥更不易从反应器中流失。但镁离子对高温厌氧污泥产甲烷活性的促进作用并不明显。辽宁厌氧反应器技术AF是采用填充材料作为微生物载体的一种高速厌氧反应器。

安徽CSTR厌氧反应器技术指导,厌氧反应器

油脂与脂肪酸对厌氧反应器的影响:

①油脂及长链脂肪酸易被厌氧污泥所吸附,使污泥上浮而流失,还会阻断传质过程,影响到厌氧污泥对其他有机物的降解。所以,油脂的存在会降低厌氧反应器的容积负荷。

②脂肪在pH值为8以上才溶解,在中性或酸性条件下是不溶解的,pH值在6以下的脂肪水解十分缓慢。

③长链脂肪酸的抑制浓度约为500~1200mg/L。长链脂肪酸的毒性大于挥发性脂肪酸,原因可能在于长链脂肪酸会改变细胞膜的通透性,并影响细胞的分裂。

④在高温厌氧消化条件下,挥发性脂肪酸大于3600mg/L时对厌氧消化有抑制作用。

⑤在中温厌氧消化条件下,挥发性脂肪酸大于2000mg/L时对厌氧消化便有抑制作用。在厌氧处理含油脂类的有机废水前,应采用物理或化学方法去除油脂。Ca²+能沉淀长链脂肪酸,可以作为消除长链脂肪酸毒性的一种方法,但这一反应要在进入厌氧反应器前进行。

厌氧颗粒污泥:厌氧颗粒污泥结构密实,呈球形或椭球形,有稳定而清晰的界面。在外观上,颗粒污泥与结构松散的絮状污泥有着明显的差别,很容易把颗粒污泥与絮状污泥区别开来。颗粒污泥比较重要的特质是具有较好的沉降性能,沉降速度为18-100m/h。由于颗粒污泥的沉降性能较好,在较高的产气负荷和水力负荷条件下也不容易流失,反应器能够保持更高的污泥浓度,为进一步提高反应器的容积负荷创造了条件。颗粒污泥反应器的容积负荷普遍高于絮状污泥反应器,通常要高于1倍以上。USR是一种结构简单、适用于高悬浮固体原料的反应器。

安徽CSTR厌氧反应器技术指导,厌氧反应器

内循环厌氧反应器(IC反应器)中气液分离器的作用:

气液分离器又称气水分离器,它处于IC反应器罐体沿口的上方,位置高出发酵液的液面,气液分离器的作用是:

(1)从发酵液中分离出沼气下反应室产生的沼气连同发酵液,经由一级提升管进入气液分离器;如果采用二级提升,上反应室产生的沼气连同发酵液经由二级提升管进入气液分离器。发酵液中的沼气,在气液分离器中实现沼气(气)与发酵液(液)的分离。

(2)是发酵液内循环的中转站下反应室的发酵液经由提升管进入气液分离器、分离出沼气后,在重力的作用下,进入回流管,再次返回到下反应室,从而形成了发酵液从下到上、再从上到下的内循环。气液分离器相当于发酵液内循环上行与下行路途上的一个“中转站"。 外循环厌氧反应器可以高效的分离模块。成都IC厌氧反应器处理费用

EGSB 可以高速地处理浓度较低的有机废水。安徽CSTR厌氧反应器技术指导

关于厌氧反应器颗粒污泥的流失:

    颗粒污泥的沉降速度可达到18~100m/h,颗粒污泥反应器的三相分离器窄缝处的上升流速能超过18m/h的情况不多见,颗粒污泥通常都能比较容易的通过三相分离器的窄缝而返回反应器中,因此水力负荷对颗粒污泥流失所造成的影响较小。

    造成颗粒污泥流失的主要原因是产气负荷:

1)颗粒污泥同絮状污泥一样,也会因吸附微小的沼气气泡而产生抬升力,但是由于颗粒污泥比表面积小,与絮状污泥相比,颗粒污泥所受到的抬升力要小得多。因此,沼气的抬升力不是造成颗粒污泥流失的主要原因。但沼气气泡对密度较小的颗粒污泥或细微颗粒污泥的抬升作用仍是不可忽略的。

2)沼气气泡破裂时,在冲刷的作用下,即便颗粒污泥的沉降速度较大,也难以抵挡气泡破裂时产生的冲刷作用。因此沼气的冲刷作用是导致颗粒污泥流失的重要原因。

3)当颗粒污泥反应器中存在大量的絮状污泥时,颗粒污泥的原始核粒以及刚开始成长的较微小的颗粒污泥,往往被包裹在絮状污泥中。当絮状污泥流失时,他们会受到絮状污泥的裹挟而流失。当废水中固体悬浮物SS浓度较高时,SS对细微的颗粒污泥也会产生裹挟作用。因此絮状污泥和SS的裹挟作用是细微颗粒污泥流失的重要原因。 安徽CSTR厌氧反应器技术指导

信息来源于互联网 本站不为信息真实性负责