高效脱氮反应器设备

时间:2024年01月28日 来源:

脱氮反应器的短程硝化反硝化工艺:传统的脱氮工艺是将NH4+氧化成NO2-,再氧化成NO3-;起作用的分别是亚硝酸菌和硝酸菌,统称为硝化菌,可得如下结论:亚硝化过程产生的能量比硝化过程产生的能量多,因而前者反应速率较后者快;亚硝化过程中产生大量的H+,使系统pH值降低,而硝化过程对系统的pH值无影响;亚硝化过程和硝化过程好氧比为3:1;亚硝酸菌和硝酸菌的生理特性大致相似,但前者的时代周期短,生长较快,因此较能适应冲击负荷和不利的环境条件。生物脱氮技术(BNR)除氮工艺硫化物对于NOB的生长具有可逆性抑制作用。高效脱氮反应器设备

脱氮反应器

脱氮反应器,也称为脱氮塔或脱氨塔,是一种用于处理废气或废水的设备。其作用主要是去除气体或废水中的氮化合物,以减少对环境和生态的污染和损害。脱氮反应器通常采用自动化控制系统,可以实时监测和处理废气或废水中的参数,如温度、pH值、氧气浓度等。自动化控制技术的应用有助于提高处理过程的稳定性和可靠性,减少人工操作误差和操作负担。脱氮反应器在处理废气或废水的过程中,通过优化设计和管理,可以实现能源的有效利用和降低能耗。此外,脱氮反应器的应用有助于减少废气或废水对环境的污染和损害,保护生态环境,符合节能环保的理念。广州DNR脱氮反应器运营成本利用短程硝化反硝化原理,可实现低C/N的水产养殖废水脱氮。

高效脱氮反应器设备,脱氮反应器

平板膜脱氮反应器的优点:1、无论污泥或者污泥指数处于何种状态,该方法都能达到很好的澄清效果。因为膜甚至可以阻止非絮状菌的通过,使出水中不含悬浮物(浊度<1NTU)。此外,当使用超滤膜时,出水相当于被全方面消毒(能去除寄生虫卵、细菌、甚至是病毒等病原体);2、由于无需沉淀池,微生物浓度可提高至6~12g/L。在相同的FM负荷下,与传统活性污泥法比,曝气池容积可缩小至原来的1/5~1/3;3、无需沉淀池和使用更小容积的生物反应器,土建费用和占地面积将大幅降低。

脱氮反应器的活性污泥法工艺:A2O法。A2O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2O 法是较简单的同步除磷脱氮工艺,总水力停留时间短,在厌氧、缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,厌氧和缺氧段在运行中只需轻缓搅拌,运行费用低。优点:该工艺为较简单的同步脱氮除磷,总的水力停留时间,总产占地面积少;在厌氧的好氧交替运行条件下,丝状菌得不到大量增殖,无污泥膨胀;污泥中含磷浓度高,具有很高的肥效;运行中勿需投药,只用轻缓搅拌,运行费低。脱氮反应器的运行需要定期检查反应器中的反应器监测和反应器控制。

高效脱氮反应器设备,脱氮反应器

新脱氮反应器工艺: ANAMMOX工艺是1990年提出的一种新型脱氮工艺。在厌氧条件下,微生物以NH3-N为电子供体,NO2-为电子受体,把NH3-N、NO2-转化为N2的过程。厌氧氨氧化过程中起作用的微生物是ANAMMOX菌。该菌是专性厌氧化学无机自养细菌,生长十分缓慢,在实验室的条件下世代期为2~3周,厌氧氨氧化过程的生物产量很低,相应污泥产量也很低。ANAMMOX工艺的影响因素主要集中在系统环境对ANAMMOX菌的抑制。主要影响因素包括反应器的生物量、基质浓度、ph值、温度、水力停留时间和固体停留时间等。硝态氮脱氮反应器有特殊定制的多孔填料。江苏BBDS脱氮反应器

高效生化脱氮反应器基本原理是基于短程硝化反硝化反应的基础上发展而来。高效脱氮反应器设备

脱氮反应器的运作原理主要包括 反硝化反应:在反硝化反应阶段,硝酸根被转化为氮气,这一过程由反硝化菌完成。与硝化反应相比,反硝化反应需要较低的氧气浓度和较高的pH值。化学方程式:6NO3- + 4H+ + 5O2 → 4N2 + 8H2O;设计考虑因素:设计脱氮反应器时,需要考虑以下因素:操作条件:脱氮反应器的操作条件对处理效果也有重要影响。温度、pH值、氧气浓度、停留时间等参数需要根据具体的工艺要求进行调整和控制。此外,合适的营养物质添加方案也是提高脱氮效率的关键因素。例如,对于反硝化反应,需要提供合适的碳源(如甲醇、乙醇等)作为反硝化的能源。高效脱氮反应器设备

信息来源于互联网 本站不为信息真实性负责