荧光素钠盐D-荧光素钾盐溶液怎么保存

时间:2022年06月02日 来源:

    每孔加入100μl养24h后,Luciferin使其终浓度为150μg/ml,PBS,再加入D-立即用活题成像系统检测,分析发光强度与细胞数之间的相关性。4)细胞生长曲线绘制MCF7-luc细胞和作为对照取表达荧光素酶的MCF-7细胞,接种于24孔板,接种密度为2×104/孔。细胞接种后1~7d,每天胰蛋白酶消化其中3孔细胞,用细胞计数仪测定细胞数。以细胞生长天数为横坐标,细胞数目为纵坐标,分别绘制两种细胞生长曲线。二.动物模型BLAB/c裸鼠皮下移植瘤模型的建立BLAB/cnu/nu裸鼠,4~5周龄,体重(15±2)g,雌雄各3只。取对数生长期的MCF-7用PBS重悬为2.5×10/ml悬液,每只裸鼠左右背侧近腋部皮下接种100μl,共接种6只。接种后第5d采用德国BERTHOLD公司的活题成像系统检测信号强度。以后每5d观测一连续观测30d。观测前每只裸鼠戊巴比妥钠麻醉(计量为:35mg/kg体重),按150mg/kg体重的量腹腔注射luciferin(invivograde),10min后,进行活题成像观察皮下肿大的瘤的生长情况,定量分析各时间点的荧光值。绘制肿大的瘤皮下生长曲线.MCF-7-luc细胞裸鼠皮下移植瘤的病理形态学观察MCF-7-luc细胞裸鼠皮下接种后25d,脱颈处死小鼠,取肿大的瘤组织,制成石蜡切片,切片厚度为3μm。D-荧光素钾盐应立即使用,或分装于-20℃避光保存,避免反复冻融。荧光素钠盐D-荧光素钾盐溶液怎么保存

    可运用荧光素酶报告系统分析其相对活性。c.验证特定转录因子同其调控序列的作用,将该序列(通常为启动子区域)插入报告基因载体,同时在实验细胞***转过表达该转录因子,可分析转录因子过表达是否提高荧光素酶活性。d.可以分析信号通路是否***,将该信号通路的下游响应原件序列构建入报告基因载体,在不同上游信号条件下,荧光素酶活性**了通路的下游响应。例如在GPCR研究中,将cAMPresponseelement(CRE)载入报告基因载体,构建稳定表达细胞株后,可以用于分析GPRC的***与6b7a976f-99ae-4c48-8159-4bd筛选。又如,将HIF1α的响应原件hypoxia-responsiveelement(HRE)插入luciferase报告载体构建稳转细胞株,可以用于低氧相关通路的研究。e.验证microRNA的靶序列,将待测的3’UTR序列插入报告基因载体,再共转入该microRNA,如果荧光素酶活性下降,则提示为其靶序列。Q:在[信诺金达]做荧光素酶报告基因检测,需要提供什么?实验结果包括哪些?您需要提供:1.基因序列或模板,需提供详细的转录因子、目的基因或microRNA信息;2.实验细胞,[信诺金达]默认为使用293T细胞,实验结束后,[信诺金达]会为您提供实验流程及完整报告一份,包括实验原始数据、图片、分析结果等。徐州荧光素酶D-荧光素钾盐应用D-荧光素钾盐的发射波长是多少?

    是新型底物开发的一个早期实例。[1]2012NanoLuc®萤光素酶基于定向进化和新型底物开发方面的经验,研究人员从虾的萤光素酶改造设计出一种新型萤光素酶报告基因,即NanoLuc®萤光素酶。这是一种小分子(19kDa)单体酶,具有独特的底物,其灵敏度比已具备高灵敏度的萤火虫或海肾萤光素酶系统高约100倍。这种新型的报告基因有着范围广的应用前景,为进一步的技术开发奠定了基础。[1]2015NanoBRET™技术NanoLuc®的小体积和非常明亮的光输出是作为蛋白质标签的理想特征。这些特征还很适合作为生物发光共振能量转移(BRET)的供体。一项针对各种能量受体荧光基团的深入研究发现,红色光谱中的可选择性有助于消除与BRET测定相关的一些挑战。可将这些荧光基团添加到蛋白质配基等分子中以测量靶蛋白的结合,或与HaloTag®配基耦联以进行活细胞中蛋白质:蛋白质相互作用的检测。[1]2016NanoBiT®技术随着NanoLuc®的诞生,Promega的科学家努力将该报告基因改造为多亚基系统,即“NanoLuc®BinaryTechnology”或NanoBiT®。该系统由两部分组成:11个氨基酸的小标签和一个更大,更精细的NanoLuc®亚基,LgBiT。这两部分结构互补结合。

    LAR)Promega公司推出的第一种萤光素酶检测试剂LuciferaseAssaySystem(LAR),为灵敏、非放射性的报告基因检测拉开了序幕。LAR与萤火虫萤光素酶(luc)报告基因一起,为研究人员开始了解基因表达调控因子提供了首要的工具。[1]1995Dual-Luciferase®报告基因检测系统(DLR)DLR是第一种允许在单个样本中依次检测两个报告基因的试剂。通过允许萤光素酶活性的内部归一化,在提高报告基因检测的可靠性方面取得了关键进展。此外,pGL3报告基因载体系列具有改良后的萤火虫萤光素酶基因,luc+。这个改造一种报告基因以实现性能改进的例子后来被进一步应用到pGL4和luc2报告基因上,通过生物信息学和合成方法,实现了更大的改进。[1]1999ENLITEN®/UltraGlo™重组萤光素酶Promega公司在早期推出的一种重组萤火虫萤光素酶(Enliten)基础上,改造出了一种称为UltraGlo™的热稳定性萤光素酶。UltraGlo™的开发是在各种检测和储藏条件下进行一步法“加样-读数”检测的关键。此后,通过开发新的方法来改变萤火虫萤光素酶检测的信号动力学,例如Bright-Glo™、Steady-Glo®和Dual-Glo®允许使用微孔板进行检测。而“加样-读数”的形式简化了样品处理。D-荧光素钾盐长期保存是有效期一年。

    tetrametrylrhodarnineisothiocyante,TRITC)是一种紫红色粉末,较稳定,是罗达明(rhodamine)的衍生物。更大吸收光谱550urn,更大发射光谱620urn呈橙红色荧光,与FITC发射的黄绿色荧光对比鲜明,常用于双标记染色。按照抗原抗体反应的结合步聚,免疫荧光法可分为以下三种。1.直接法用荧光素标记的特异性抗体直接与相应的抗原结合,以检查出相应的抗原成分。2.间接法先用特异性抗体与相应的抗原结合,洗去未结合的抗体,再用荧光素标记的抗特异性抗体(间接荧光抗体)与特异性抗体相结合,形成抗原一特异性抗体一间接荧光抗体的复合物。在此复合物上带有比直接法更多的荧光抗体,所以,此法较直接法灵敏。3.补体法用特异性的抗体和补体的混合液与标本上的抗原反应,补体就结合在抗原抗体复合物上,再用抗补体的荧光抗体与之相结合,就形成了抗原一抗体一补体一抗补体荧光抗体的复合物。荧光显微镜下所见到的发出荧光的部分即是抗原所在的部位。补体法具有敏感性强的优势,同时适用于各种不同种属来源的特异性抗体的标记显示,在各种不同种属动物抗体的检测上为更常用的技术方法荧光素酶(英文名称:Luciferase)是自然界中能够产生生物荧光的酶的统称。D-荧光素盐也算是钠盐和钾盐。荧光素钠盐D-荧光素钾盐溶液怎么保存

D-荧光素钾盐的配置是什么?荧光素钠盐D-荧光素钾盐溶液怎么保存

    荧光素酶(Luciferase)是自然界中能够催化荧光素产生生物发光的酶的统称,其中**有7a70d2e3-5dda-4f49-84be-c6的是来自萤火虫体内(Firefly)和海肾(Renilla)体内的两类萤光素酶,分别命名为F-Luciferase和R-Luciferase,同时近年来研究得较多的来源于高斯氏菌的高斯荧光素酶(Gaussluciferase)。荧光素酶可以催化luciferin氧化成oxyluciferin,在luciferin氧化的过程中,会发出生物荧光(bioluminescence),可通过荧光测定仪设备测定luciferin氧化过程中释放的生物荧光,常应用于启动子转录活性调控及miRNA靶基因验证等方向研究。萤火虫萤光素酶**通用和**常见的报告基因是北美萤火虫photinuspyralis的荧光素酶,该蛋白质不需要翻译后修饰即可获得酶活性。高浓度(体内)甚至没有毒性,可用于原核和真核细胞。Amplite™萤光素酶报告基因检测试剂盒(12518)使用无DTT**配方来定量活细胞和细胞提取物中的萤光素酶活性。该测定基于萤火虫荧光素酶,萤火虫荧光素酶是一种单体的61kD酶,可催化荧光素的两步氧化,在560nm处产生光。Amplite™萤光素酶报告基因检测试剂盒特点:具有优化的“混合读取”测定规程,可与HTS液体处理仪器兼容具有高灵敏度。荧光素钠盐D-荧光素钾盐溶液怎么保存

南京翌科生物科技有限公司致力于商务服务,以科技创新实现高品质管理的追求。公司自创立以来,投身于外泌体提取,非编码RNA试剂,检测试剂,转染试剂,是商务服务的主力军。翌科生物始终以本分踏实的精神和必胜的信念,影响并带动团队取得成功。翌科生物始终关注商务服务市场,以敏锐的市场洞察力,实现与客户的成长共赢。

信息来源于互联网 本站不为信息真实性负责