南通游离酸D-荧光素钾盐发射波长

时间:2022年10月30日 来源:

    或分装于-20℃避光保存,避免反复冻融。2)用预热好的组织培养基将储存液稀释至mg/mL的工作液浓度。3)去除细胞培养基。4)待图像分析前,向细胞内添加荧光素工作液,37℃孵育5-10min,然后进行图像分析。2.***成像分析1)用无菌的DPBS(w/oMg2+、Ca2+)配制15mg/mL的荧光素的储存液,混匀。2)用µm滤膜过滤除菌。立即使用,或分装于-20℃避光保存,避免反复冻融。3)腹腔注射(.),按照150mg/kg的荧光素/体重浓度进行注射。4)注射入体内10-15min(待光信号达到更强稳定平台期)后进行成像分析。注:建议对每只动物模型都需要建立荧光素酶动力学曲线,从而确定更高信号检测时间和信号平台期。注意事项1)本品(fireflyluciferin)和甲虫荧光素(beetleluciferin)只只是不同公司在命名上的差异,都是指化合物(S)-2-(6-Hydroxy-2-benzothiazolyl)-2-thiazoline-4-carboxylicacid。2)注射方式、动物类型以及体重等都会影响信号的发射,因此建议每次实验都要做荧光素酶动力学曲线,确定更佳信号平台期和更佳的检测时间。3)如果要进行ATP的检测,尽量避免外源ATP的污染,如操作时戴手套并使用ATP-free的实验耗材,在进行荧光素的溶解时应使用ATP-free无菌水。D-荧光素也常用于身体的外部研究。南通游离酸D-荧光素钾盐发射波长

    萤光素酶(英文名称:Luciferase)是自然界中能够产生生物荧光的酶的统称,其中**有代表性的是一种学名为Photinuspyrali'的萤火虫体内的萤光素酶,萤火虫发光的腹部或海洋的蓝色发光波浪将大自然中生物发光奇迹呈现于世。在生物化学和分子生物学的早期,这一现象被认为是发展生物分析的有力平台。1991年,Promega发布了***代萤光素酶分析产品,并启动了基于萤光素酶的进一步创新计划,通过持续致力于研究和创新生物发光系统建立了各种不同的分析技术。Promega萤光素酶技术发光史里程碑AGlo-ingHistoryofInnovationandDiscovery1990年12月,Promega***提出萤火虫萤光素酶(Luc)作为一种新兴报告基因技术的应用可能性。当时的人们认为,萤火虫萤光素酶具备的生物发光特性、极高的灵敏度和快速简单的检测流程等特点,可能会对分子生物学家的研究产生重要的影响。几个月后,***代萤火虫萤光素酶报告基因载体和检测试剂在Promega诞生,使这项新技术正式并更***地为全球研究人员服务。随后30年里,Promega不断在萤光素酶实验工具领域推陈出新,保持技术***的地位。这里提到的萤光素酶即荧光素酶。[1]1991萤光素酶检测系统。荧光试剂D-荧光素钾盐应立即使用,或分装于-20℃避光保存,避免反复冻融。

    这是一种小分子(19kDa)单体酶,具有独特的底物,其灵敏度比已具备高灵敏度的萤火虫或海肾萤光素酶系统高约100倍。这种新型的报告基因有着***的应用前景,为进一步的技术开发奠定了基础。[1]2015NanoBRET™技术NanoLuc®的小体积和非常明亮的光输出是作为蛋白质标签的理想特征。这些特征还很适合作为生物发光共振能量转移(BRET)的供体。一项针对各种能量受体荧光基团的深入研究发现,红色光谱中的可选择性有助于消除与BRET测定相关的一些挑战。可将这些荧光基团添加到蛋白质配基等分子中以测量靶蛋白的结合,或与HaloTag®配基耦联以进行活细胞中蛋白质:蛋白质相互作用的检测。[1]2016NanoBiT®技术随着NanoLuc®的诞生,Promega的科学家努力将该报告基因改造为多亚基系统,即“NanoLuc®BinaryTechnology”或NanoBiT®。该系统由两部分组成:11个氨基酸的小标签和一个更大,更精细的NanoLuc®亚基,LgBiT。这两部分结构互补结合,重组为一个明亮的萤光素酶。这些亚基的亲和力可以和SmBiT肽一样低,从而可以进行蛋白质相互作用的测定;也可以和HiBiT一样高,从而允许自我组装。[1]2017HiBiT®技术基于NanoBiT®系统的研究。

    普遍应用于整个生物技术领域,尤其是体内活ti成像技术。其作用机制是在ATP和荧光素酶的作用下,荧光素(底物)能够被氧化发光。当荧光素过量时,产生的光量子数与荧光素酶的浓度呈正相关性。萤光素酶(英文名称:Luciferase)是自然界中能够产生生物荧光的酶的统称,其中更有代表性的是一种学名为Photinuspyrali'的萤火虫体内的萤光素酶,萤火虫发光的腹部或海洋的蓝色发光波浪将大自然中生物发光奇迹呈现于世。在生物化学和分子生物学的早期,这一现象被认为是发展生物分析的有力平台。1991年,Promega发布了di一代萤光素酶分析产品,并启动了基于萤光素酶的进一步创新计划,通过持续致力于研究和创新生物发光系统建立了各种不同的分析技术Promega萤光素酶技术发光史里程碑AGlo-ingHistoryofInnovationandDiscovery1990年12月,Promega初次提出萤火虫萤光素酶(Luc)作为一种新兴报告基因技术的应用可能性。当时的人们认为,萤火虫萤光素酶具备的生物发光特性、极高的灵敏度和快速简单的检测流程等特点,可能会对分子生物学家的研究产生重要的影响。几个月后,di一代萤火虫萤光素酶报告基因载体和检测试剂在Promega诞生,使这项新技术正式并更范围广地为全球研究人员服务。D-荧光素钾盐的活题成像技术。

    短期保存:4℃干燥避光长期保存:-20℃干燥避光母液保存:-20℃避光有效期长期保存:有效期一年工作液:先用现配使用方法1.体外生物发光检测1)用无菌蒸馏水溶解D-荧光素钾盐,配制成30mg/mL的储存液(100-200×),混匀。立即使用,或分装于-20℃避光保存,避免反复冻融。2)用预热好的组织培养基将储存液稀释至mg/mL的工作液浓度。3)去除细胞培养基。作者:思存链接:zhuanlan./p/来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。高斯荧光素酶近年来,其他荧光素酶(例如高斯荧光素酶)的使用有所增加,因为这些报告基因较小,并且不需要ATP的存在。高斯荧光素酶是一种20kD的蛋白质,可通过氧气催化腔肠素氧化,产生光。来自于海洋足类高斯氏菌的生物发光酶在表达后可有效地从哺乳动物细胞中分泌出来。Amplite™高斯荧光素酶报告基因检测试剂盒(#AAT-12530)使用专有的发光配方来定量细胞培养基中的荧光素酶活性。当该试剂与高斯荧光素酶相互作用时,产sheng发光产物,该发光产物提供强发光。Amplite高斯荧光素酶报告基因测定试剂盒特点:提供了与HTS液体处理仪器兼容的所有基本组件它们具有高灵敏度。D-荧光素钾盐运输条件是4℃冰袋运输。6-异硫氰酸荧光素

做D-荧光素钾盐测试哪个公司好?南通游离酸D-荧光素钾盐发射波长

    luciferyladenylate)+PPi萤光素化腺苷酸+O2→氧荧光素+AMP+光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有越10%的能量被转化为光,剩余的能量都变为热能而被浪费。分析荧光素或荧光素酶不是特定的分子,而是对于所有能够产生荧光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的荧光素酶来催化不同的发光反应。更为人所知的发光生物是萤火虫,而其所采用不同的荧光素酶与其他发光生物如荧光菇(发光类脐菇,Omphalotusoleariu')或许多海洋生物都不相同。在萤火虫中,发光反应所需的氧气是从被称为腹部气管(abdominaltrachea)的管道中输入。一些生物,如叩头虫,含有多种不同的荧光素酶,能够催化同一荧光素底物,而发出不同颜色的荧光。萤火虫有2000多种,而叩甲总科(包括萤火虫、叩头虫和相关昆虫)则有更多,因此它们的荧光素酶对于分子系统学研究很有用。目前研究得更透彻的荧光素酶是来自Photinini族萤火虫中的北美萤火虫(Photinuspyrali')。应用荧光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。南通游离酸D-荧光素钾盐发射波长

南京翌科生物科技有限公司汇集了大量的优秀人才,集企业奇思,创经济奇迹,一群有梦想有朝气的团队不断在前进的道路上开创新天地,绘画新蓝图,在江苏省等地区的商务服务中始终保持良好的信誉,信奉着“争取每一个客户不容易,失去每一个用户很简单”的理念,市场是企业的方向,质量是企业的生命,在公司有效方针的领导下,全体上下,团结一致,共同进退,**协力把各方面工作做得更好,努力开创工作的新局面,公司的新高度,未来南京翌科生物科技供应和您一起奔向更美好的未来,即使现在有一点小小的成绩,也不足以骄傲,过去的种种都已成为昨日我们只有总结经验,才能继续上路,让我们一起点燃新的希望,放飞新的梦想!

信息来源于互联网 本站不为信息真实性负责