汕尾数学教学教具配置

时间:2023年02月04日 来源:

21、**简分数:分子、分母是互质数的分数,叫做**简分数。分数计算到***,得数必须化成**简分数。个位上是0、2、4、6、8的数,都能被2整,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。

22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。

23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。

28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)

29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 联动型针面教学模型。汕尾数学教学教具配置

汕尾数学教学教具配置,数学教学教具

3.假分数与带分数或整数之间的互化。1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。3、将带分数化为整数:被除数÷除数= 被除数/除数,除得尽的为整数。分数、小数与百分数分数、小数、百分数之间的互化。分数化小数,也就是用分子除以分母,得出的即是小数,小数化为百分数,也就是让小数乘上100,再在其后面加上个%号就可以了,反之,则反过来就可以了。比如:1/4化为小数,就是1除以4=0.25 就是小数,再化成百分数就是 0.25*100=25 再加上% 即25%。若把25%化成小数即去掉百分号现除以100 25/100=0.25。0.25化成分数即25/100再化简得1/4。数的比较整数大小比较:两个整数求差,值为正则前者大于后者,为负则反之。小数大小比较:同上。分数大小比较:同上。 [2] 数的性质分数基本性质、小数基本性质、小数点位置移动引起小数大小变化规律。数的认识因数、倍数、奇(jī)数、偶数、质数(素数)、合数、分解质因数、比较大公因数、**小公倍数。福州数学教学教具三角形内角和演示教具。

汕尾数学教学教具配置,数学教学教具

平面几何指按照欧几里得的《几何原本》构造的几何学。也称欧几里得几何。平面几何研究的是平面上的直线和二次曲线(即圆锥曲线, 就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度,位置关系)。平面几何采用了公理化方法, 在数学思想史上具有重要的意义。


平面几何指按照欧几里得的《几何原本》构造的几何学 [1]  。也称欧几里得几何。三维空间的欧几里得几何通常叫做立体几何。 高维的情形请参看欧几里得空间。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。

三角函数定理

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

圆的定理

定理:过不共线的三个点,可以作且只可以作一个圆

定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧

推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧

推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧

推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧

定理:

1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等

2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线

3.圆的切线垂直经过切点的半径

4.三角形的三个内角平分线交于一点,这点是三角形的内心

5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

6.圆的外切四边形的两组对边的和相等

7.如果四边形两组对边的和相等,那么它必有内切圆

8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等

中小学生几何体数学教具。

汕尾数学教学教具配置,数学教学教具

勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法**多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的**重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,**早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。小学数学圆周率推算演示模型价格。福州数学教学教具

小学数学各年级常用教学仪器。汕尾数学教学教具配置

等腰三角形性质


等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)

推论1:

等腰三角形顶角的平分线平分底边并且垂直于底边

等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

对称定律



定理:线段垂直平分线上的点和这条线段两个端点的距离相等

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

线段的垂直平分线可看作和线段两端点距离相等的所有点的**

定理1:关于某条直线对称的两个图形是全等形

定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称



汕尾数学教学教具配置

深圳市星河教学用品有限公司在同行业领域中,一直处在一个不断锐意进取,不断制造创新的市场高度,多年以来致力于发展富有创新价值理念的产品标准,在广东省等地区的办公、文教中始终保持良好的商业口碑,成绩让我们喜悦,但不会让我们止步,残酷的市场磨炼了我们坚强不屈的意志,和谐温馨的工作环境,富有营养的公司土壤滋养着我们不断开拓创新,勇于进取的无限潜力,星河教学用品供应携手大家一起走向共同辉煌的未来,回首过去,我们不会因为取得了一点点成绩而沾沾自喜,相反的是面对竞争越来越激烈的市场氛围,我们更要明确自己的不足,做好迎接新挑战的准备,要不畏困难,激流勇进,以一个更崭新的精神面貌迎接大家,共同走向辉煌回来!

信息来源于互联网 本站不为信息真实性负责