三亚现货数学教学教具
3.假分数与带分数或整数之间的互化。1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。3、将带分数化为整数:被除数÷除数= 被除数/除数,除得尽的为整数。分数、小数与百分数分数、小数、百分数之间的互化。分数化小数,也就是用分子除以分母,得出的即是小数,小数化为百分数,也就是让小数乘上100,再在其后面加上个%号就可以了,反之,则反过来就可以了。比如:1/4化为小数,就是1除以4=0.25 就是小数,再化成百分数就是 0.25*100=25 再加上% 即25%。若把25%化成小数即去掉百分号现除以100 25/100=0.25。0.25化成分数即25/100再化简得1/4。数的比较整数大小比较:两个整数求差,值为正则前者大于后者,为负则反之。小数大小比较:同上。分数大小比较:同上。 [2] 数的性质分数基本性质、小数基本性质、小数点位置移动引起小数大小变化规律。数的认识因数、倍数、奇(jī)数、偶数、质数(素数)、合数、分解质因数、比较大公因数、**小公倍数。中学立体几何模型演示教具。三亚现货数学教学教具
数整数、自然数、正数、负数、分数、小数 百分数 [1] 。计数单位和数位计数单位、数位、十进制计数法。数的改写(省略)1.把多位数改写成“万”、“亿”直接改写:先把原数小数点向左移动4位或8位(小数部分的末尾是0要划掉),然后再加万或亿,中间要用“=”连接。省略尾数改写成近似数:用“四舍五入法”省略万位或亿位后面的尾数,再在数的后面加万或亿,得出的是近似数,中间要用“≈”连接。 [2] 2.求小数近似数。根据要求,把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入法”省略,如1.5≈2,1.4≈1。中间要用“≈”号。宁夏演示教具数学教学教具几何图形认知教具--钉板。
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的**小正实数x。圆周率用希腊字母π(读作pài)表示,是一个常数(约等于3.14159……),是**圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14**圆周率去进行近似计算。而用十位小数3.141592……便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
21、**简分数:分子、分母是互质数的分数,叫做**简分数。分数计算到***,得数必须化成**简分数。个位上是0、2、4、6、8的数,都能被2整,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。 中小学数学教学需要用到哪些教具?
1. 数学史2. 数理逻辑与数学基础a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理**论,f:数学基础,g:数理逻辑与数学基础其他学科。3. 数论a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。4. 代数学a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,结合环与结合代数,非结合环与非结合代数等),h:模论,i:格论,j:泛代数理论,k:范畴论,l:同调代数,m:代数K理论,n:微分代数,o:代数编码理论,p:代数学其他学科。5. 代数几何学6. 几何学a:几何学基础,b:欧氏几何学,c:非欧几何学(包括黎曼几何学等),d:球面几何学,e:向量和张量分析,f:仿射几何学,g:射影几何学,h:微分几何学,i:分数维几何,j:计算几何学,k:几何学其他学科。分类问题教学演示磁性教具。三亚现货数学教学教具
平方立方问题教学演示模型。三亚现货数学教学教具
菱形定理
菱形性质定理1:菱形的四条边都相等
菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角
菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形判定定理1:四边都相等的四边形是菱形
菱形判定定理2:对角线互相垂直的平行四边形是菱形
正方形定理
正方形性质定理1:正方形的四个角都是直角,四条边都相等
正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
中心对称定理
定理1:关于中心对称的两个图形是全等的
定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
三亚现货数学教学教具上一篇: 磁性教具数学教学教具
下一篇: 义务教育音乐器材行业咨询