广东数学教学教具配置
点的定理:
1、过两点有且只有一条直线
2、两点之间线段**短
角的定理:
1、同角或等角的补角相等
2、同角或等角的余角相等
直线定理:
1、过一点有且只有一条直线和已知直线垂直
2、直线外一点与直线上各点连接的所有线段中,垂线段**短
平行定理:经过直线外一点,有且只有一条直线与这条直线平行
推论:如果两条直线都和第三条直线平行,这两条直线也互相平行
证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行
两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补 专业基础教育数学仪器生产供应商。广东数学教学教具配置
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
包头公立 数学教学教具小学数学体积演示教具。
加法是基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。表达加法的符号为加号“+”。进行加法时以加号将各项连接起来。
减法是四则运算之一,从一个数中减去另一个数的运算叫做减法;已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。表示减法的符号是“-”,读作减号。
除法是四则运算之一。已知两个因数的积与其中一个非零因数,求另一个因数的运算,叫做除法。 [1] 两个数相除又叫做两个数的比。若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c÷b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y=k(k一定)或k/x=y百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 小学数学各年级常用教学仪器。
平方是一种运算,比如,a的平方表示a×a,简写成a²,也可写成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符号为2。
立方指数为3的乘方运算即表示三个相同数的乘积;a的立方表示a×a×a,简写成a³,如5×5×5叫做5的立方,记做5³。
1、立方也叫三次方。三个相同的数相乘,叫做这个数的立方。如5×5×5叫做5的立方,记做5³。
2、量词,用于体积,一般指立方米。
3、在图形方面,立方是测量物体体积的,如立方米、立方分米、立方厘米等常用单位,步骤如下:(1)求出立方体的棱长(2)棱长³=体积(注意:如果棱长单位是厘米,体积单位是立方厘米,写作cm³;如果棱长单位是米,体积单位是立方米,写作m³,以此类推。)英文单词:cube4.立方等于它本身的数只有1,0,-1.5.正数的立方是正数,0的立方是0,负数的立方是负数。拓展:负数的奇数次幂都是负数。 小学数学勾股定律演示模型供应。广东数学教学教具配置
磁性圆柱圆锥体框架表面积模型。广东数学教学教具配置
菱形定理
菱形性质定理1:菱形的四条边都相等
菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角
菱形面积=对角线乘积的一半,即S=(a×b)÷2
菱形判定定理1:四边都相等的四边形是菱形
菱形判定定理2:对角线互相垂直的平行四边形是菱形
正方形定理
正方形性质定理1:正方形的四个角都是直角,四条边都相等
正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
中心对称定理
定理1:关于中心对称的两个图形是全等的
定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
广东数学教学教具配置上一篇: 江苏本地生物教学器材推荐
下一篇: 杭州中学生物教学器材标准