智能化多端口矩阵测试USB物理层测试方案商

时间:2023年12月15日 来源:

要进行USB2.0传输速率测试,可以使用一些合适的工具和设备。以下是使用合适的工具和设备进行传输速率测试的探讨:USB2.0测试仪器:使用专门的USB2.0测试仪器是进行传输速率测试的优先。这些仪器通常具有能够模拟和监测USB2.0传输的功能,可以提供准确的传输速率测量和分析。信号发生器:信号发生器可用于产生不同频率和幅度的信号,并将其输入USB2.0设备进行测试。这可用于模拟不同数据传输场景,以评估设备在不同情况下的传输速率。场强仪:场强仪可用于测量USB2.0设备接收到的信号强度。这有助于评估信号在传输过程中的衰减情况,从而影响传输速率。示波器:示波器可以用于观察和分析USB2.0设备接收到的数据信号的波形。通过检查波形,可以确定信号的稳定性和完整性,从而影响传输速率。电流表和电压表:使用电流表和电压表等仪器,可以测量和记录USB2.0设备的电流输出和电压稳定性。这有助于评估设备的电源供应能力,从而影响传输速率。USB4.0回波损耗测试定义?智能化多端口矩阵测试USB物理层测试方案商

智能化多端口矩阵测试USB物理层测试方案商,USB物理层测试

第二项测试是发射机均衡测试,这项测试也与USB4预置值有关。这项测试的目标,是确保发射机均衡落在规范的极限范围内。新USB4方法要求每个预置值3个波形,而PCIeGen3/4则要求一个波形。现在一共需要48个波形,因此耗时很长!USB4中接收机测试和校准变化现在我们讨论一下USB4中接收机测试和校准有哪些变化。首先,USB4必需对全部5个SJ频率执行接收机校准。这较USB3.2接收机校准变化很大,在USB3.2中我们只在100MHzSJ频率执行校准,然后使用相同的压力眼图校准进行接收机测试。USB4还有两种测试情况,我们需要进行自动调谐或精调,来满足压力眼图或总抖动目标。情况1是低插损(短通道),情况2是比较大插损(长通道),这也要耗费很长时间。下一步是USB4接收机测试,或者我们怎样运行传统抖动容差测试。抖动容差测试的目标之一,是扫描SJ或幅度,找到边界,或者找到哪里开始出现误码。为了执行这项测试,我们需要先使用边带通道初始化链路,然后开始BER测试。然后我们要一直监测误码,因为USB4现在采用机载误码计数器,而不是BERT上的传统误码检测器。这个过程涉及到多个安徽USB物理层测试推荐货源USB物理层测试是否包括插头、插座的机械强度测试?

智能化多端口矩阵测试USB物理层测试方案商,USB物理层测试

从2015年到现在,是德科技基于磷化铟(InP)工艺的Infiniium系列高带宽示波器,凭借其优异的低噪声、低抖动底噪等硬件性能和的尾部拟合”Tail-fit”抖动分离算法等软件,一直是被Intel和Thunderbolt认证实验室认可和批准使用的高带宽示波器。进入到USB4.0时代,大家如果仔细通读每一个版本的测试规范,都可以发现,所以的仪表截屏、设定和算法,采用的都是德科技高带宽示波器。2019年,是德科技基于第二代磷化铟(InP工艺,推出了110GHz带宽,256GSa/s采样率,硬件10bitADC,25fs抖动底噪的UXR系列示波器,将高速信号量测精度推到了另外一个高度。如下所示,是是德科技UXR示波器和已是业内的是德科技V系列示波器,测试同一个USB4.0信号的测试结果比较,UXR示波器提供了更优的信号测试余量。

USB2.0信号完整性测试是一项关键的测试任务,用于评估USB2.0设备在数据传输过程中信号的质量和稳定性。以下是进行USB2.0信号完整性测试的一般步骤:准备测试环境:确保测试环境符合USB2.0标准要求,包括合适的计算机和USB2.0测试设备。连接USB2.0设备:将要测试的USB2.0设备连接到计算机上,并插入到USB2.0接口。选择信号发生器:选择合适的信号发生器,可以产生不同频率和幅度的信号。设置信号参数:根据测试要求,设置所需的信号参数,包括信号频率、幅度和波形等。连接信号发生器:将信号发生器的输出端与待测USB2.0设备的对应端口连接起来。测量信号质量:使用示波器或信号分析仪等仪器,对从USB2.0设备接收到的信号进行测量。USB物理层测试是否需要特定的测试环境?

智能化多端口矩阵测试USB物理层测试方案商,USB物理层测试

USB电缆/连接器测试和USB2.0相比,USB3.0及以上产品的信号带宽高出很多,电缆、连接器和信号传输路径验证变得更加重要。图3.39是规范中对支持10Gbps信号的Type-C电缆的插入损耗(InsertionLoss)和回波损耗(ReturnLoss)的要求。很多高速传输电缆的插损和反射是用频域的S参数的形式描述的,频域传输参数的测试标准是矢量网络分析仪(VNA)。另外,对于电缆来说还有一些时域参数,如差分阻抗和不对称偏差(Skew)等也必须符合规范要求,这两个参数通常是用TDR/TDT来测量。目前很多VNA已经可以通过增加时域TDR选件(对频域测试参数进行反FFT变换实现)的方式实现TDR/TDT功能。另外,USBType-C电缆上要测试的线对数量很多,通过模块化的设计,VNA可以在一个机箱里支持多达32个端口,因此所有差分电缆/连接器的测试项目都可以通过一台多端口的VNA来完成。图3.40是用多端口的VNA配合测试夹具进行Type-C的USB电缆测试的例子。USB4.0 Sideband 信号测试?海南USB物理层测试项目

USB3.0眼图测试方法 USB3.0物理层测试 USB3.0眼图测试。智能化多端口矩阵测试USB物理层测试方案商

自1995年USB1.0的规范发布以来,USB(UniversalSerialBus)接口标准经过了20多年的持续发展和更新,已经成为PC和外设连接使用的接口。USB历经了多年的发展,从代的USB1.0低速(LowSpeed)、USB1.1全速(FullSpeed)标准,逐渐演进到第2代的USB2.0高速(HighSpeed)标准和第3代的USB3.0超高速(SuperSpeed)标准。这些标准目前都已经得到的应用。后来,为了应对eSATA、ThunderBolt等标准对USB标准的威胁,USB协会又分别在2013年和2017年发布了USB3.1及USB3.2的标准。在USB3.1标准中新定义了10Gbps速率以及对Type-C接口的支持;在USB3.2标准中,又基于Type-C接口提供了对X2模式的支持,可以通过收发方向各捆绑2条10Gbps的链路实现20Gbps的数据传输。而新的USB4.0标准已经于2019年发布,可以通过捆绑2条20Gbps的链路实现40Gbps的接口速率。表3.1是USB各代总线的技术对比。智能化多端口矩阵测试USB物理层测试方案商

信息来源于互联网 本站不为信息真实性负责