组织铁死亡项目

时间:2023年03月02日 来源:

山柰酚是人参花蕾乙醇提取成分之一,是很多植物蔬菜中含有的一种生物类黄酮,具有清chu自由基的能力。在小鼠海马HT22细胞系氧化应激诱导的铁死亡中,山柰酚通过多种抗氧化机制减轻铁死亡,如抑制细胞内ROS和线粒体超氧阴离子的产生并增加细胞内Ca2+浓度,诱导ARE并激huo核因子红细胞2相关因子2(Nrf2)-ARE通路,参与预防氧化应激发挥神经保护作用。铁死亡是铁依赖的细胞内脂质活性氧积累造成的细胞氧化性死亡形式。近年来,多种基因和其编码蛋白被鉴定出可以调控铁死亡的进程。与经典的细胞凋亡不同,铁死亡过程中没有细胞皱缩,染色质凝集等现象,但会线粒体皱缩,脂质过氧化增加。组织铁死亡项目

Fenton反应的反应效率很大程度上受到H2O2水平的限制,因此增加中流组织中H2O2供应将提高其抗中流效果。通过含铁MOF的H2O2递送也是铁死亡纳米zhiliao策略的另一研究方向,因而受到广fan关注。Wan等构建了一种基于MOF,递送葡萄糖氧化酶(glucoseoxidase,GOx)的高效级联纳米反应器,能发挥协同作用诱导铁死亡。GOx不jin能催化葡萄糖生成大量的H2O2并与释放的铁离子发生Fenton反应,产生大量的ROS诱导中流细胞发生铁死亡。此外,GOx还能够大量消耗葡萄糖,形成另一种有吸引力的ai症zhiliao策略(饥饿疗法)。当纳米反应器到达中流部位时,高浓度的GSH还原Fe3+,引起MOF结构坍塌,释放Fe2+和GOx催化葡萄糖氧化产生H2O2。随后,产生的H2O2和Fe2+发生Fenton反应,产生羟基自由基(•OH),促进中流细胞铁死亡。在zhiliao期间,纳米反应器zhiliao组的小鼠中流体积几乎没有增长,中流重量jin为未zhiliao组的1/5,实现了高效的协同抗中流效果。组织铁死亡项目铁死亡时细胞电镜下观察到胞内线粒体变小、双层膜密度增高。

基础研究中经常涉及到对多种细胞死亡方式的研究,如细胞自噬、凋亡、焦亡等。铁死亡是2012年由Brent R. Stockwell提出的[1],研究发现Erastin可以特异性诱导Ras突变细胞死亡,但是没有典型的细胞凋亡特征,铁螯合剂可以抑制这一过程,并且另一种化合物RSL3也有类似的细胞死亡表型[2, 3]。与经典的细胞凋亡不同,铁死亡过程中没有细胞皱缩,染色质凝集等现象,但会出现线粒体皱缩,脂质过氧化增加。细胞铁死亡是近几年才被发现的一种细胞死亡方式。

抑制抗氧化系统也是诱导铁死亡的重要途径之一,抗氧化系统包括谷胱甘肽还原酶/谷胱甘肽/谷胱甘肽过氧化物酶(GR/GSH/GPx),有研究发现一种甲萘二酮羧酸衍生物6-[2-(3-甲基)-萘醌基]己酸(NQA),能够抑制细胞内的抗氧化系统。通过配位组装过程构建了Fe3+和NQA的自组装纳米粒,不jin能够释放铁离子通过Fenton反应提高体内ROS水平,释放的NQA还能够明显抑制体内的抗氧化系统(GR/GSH/GPx),能够在双途径中诱导铁死亡,明显地遏制了中流的生长、转移和耐药。与之相似,Xu等设计了一个pH敏感的金属有机纳米反应器,同时负载生物碱荜拔酰胺。制备的纳米粒进入偏酸性的中流细胞内后会快速地释放荜拔酰胺,荜拔酰胺能够下调GSH,抑制体内抗氧化系统,加速诱导铁死亡,提供了一种新型高效的zhiliao方案。在形态学上,铁死亡主要表现为线粒体萎缩,线粒体嵴减少或消失、线粒体膜密度增加、线粒体外膜破裂。

药物性肝损伤(DILI)是指由药物本身或其代谢产物等引起的肝损伤。对乙酰氨基酚(acetaminophen,A***)是常用的解热镇痛药,过量服用A***是诱发DILI主要的原因之一。其特征为GSH耗竭,GPX受抑制和不依赖于凋亡相关的半胱氨酸天冬氨酸蛋白酶,这与铁死亡的特征高度契合。Lrincz等对比铁死亡抑制剂、坏死性凋亡抑制剂和抗氧化剂在不同A***浓度下肝细胞活力,发现给予小鼠高浓度的A***(10mmol/L)时,铁死亡抑制剂Fer-1有明显的抑制肝细胞损伤作用,而更高浓度(20mmol/L)时,这种保护作用更加明显。铁死亡可以选择性地诱导中流干细胞死亡,提高中流细胞对化疗药物的敏感性,清chuai细胞。组织铁死亡项目

铁死亡免疫学特征为损伤相关分子模式(DAMPs)释放前炎症介质(如高迁移率族蛋白B1等)。组织铁死亡项目

2012年DIXON等发现铁死亡时,尚不清楚GPX4扮演的作用。直到2014年,研究者通过靶向代谢组学分析发现,谷胱甘肽的缺失会导致谷胱甘肽过氧化物酶(GPXs)的失活,进一步化学蛋白质组学策略筛选出GPX4分子。敲降或者过表达GPX4调节了12种铁死亡诱导剂的致死率,但对11种其它机制致死试剂没有影响。无疑,GPX4是铁死亡的关键调控因子。GPX4可以通过其酶活性阻止脂质过氧化物的毒性,维持膜脂质双分子层的稳态。RSL3通过与GPX4的共价键结合抑制GPX4的活性,导致过氧化物的积累。RSL3处理引起的铁死亡与GPX4失活相似,进一步支持RSL3通过GPX4抑制引起的铁死亡。谷胱甘肽(GSH)是GPX4催化过氧化物转化为醇的协同因子。谷胱甘肽缺乏引起的半胱氨酸缺乏直接使GPX4失活,并导致随后的铁死亡。组织铁死亡项目

研载生物科技(上海)有限公司依托可靠的品质,旗下品牌研载生物以高质量的服务获得广大受众的青睐。业务涵盖了外泌体实验,细胞自噬实验, 细胞功能实验,铁死亡实验等诸多领域,尤其外泌体实验,细胞自噬实验, 细胞功能实验,铁死亡实验中具有强劲优势,完成了一大批具特色和时代特征的医药健康项目;同时在设计原创、科技创新、标准规范等方面推动行业发展。随着我们的业务不断扩展,从外泌体实验,细胞自噬实验, 细胞功能实验,铁死亡实验等到众多其他领域,已经逐步成长为一个独特,且具有活力与创新的企业。值得一提的是,上海研载生物致力于为用户带去更为定向、专业的医药健康一体化解决方案,在有效降低用户成本的同时,更能凭借科学的技术让用户极大限度地挖掘研载生物的应用潜能。

信息来源于互联网 本站不为信息真实性负责