广东数字语音关键事件检测内容
上述本发明实施例提供的一种事件检测方法还可以包括如下步骤a1-a2:步骤a1:判断目标防护舱当前时刻发生的事件类型是否包括预设类型的事件;如果是,执行步骤a2;步骤a2:生成并发出与预设类型对应的报警信号。当电子设备确定当前时刻目标防护舱内出现的异常事件的类型后,便可以进一步判断该事件类型是否包括预设类型的事件,并在判断结果为时是,生成并发出与预设类型对应的报警信息。例如,当电子设备确定当前时刻目标防护舱内出现的异常事件为用户倒地事件,而预设类型的事件也为用户倒地事件时,电子设备便可以判断得到:目标目标防护舱当前时刻发生的事件类型包括预设类型的事件。进而,电子设备便可以生成和发出与用户倒地事件对应的报警信号,例如,发出“请拨打120”的语音信息等。其中,电子设备生成并发出的报警信号可以有多种形式,例如,指示灯闪烁,发出语音信息,发出警报声等。这都是合理的。此外,为了能够更充分地了解异常事件发生前后,目标防护舱的内部情况,监控人员通常会在异常事件处理结束后,去查看目标防护舱的监控视频。然而,由于目标防护舱的监控视频具有大量的视频数据,且该数据数据还在实时增加,因此。语音关键事件检测运用成熟度如何?广东数字语音关键事件检测内容
存储器通过通信总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现上述方面提供的一种事件检测方法中的任一方法步骤。第四方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述方面提供的一种事件检测方法中的任一方法步骤。以上可见,应用本发明实施例提供的方案,实时获取目标防护舱的图像,并判断当前时刻所采集到的当前帧图像是否包括目标对象,由于目标对象为:能够表征用户进入目标防护舱的用户身体部位,则可以基于当前帧图像判断当前时刻是否有用户进入目标防护舱。则当判断结果为是时,便可以基于当前帧图像,确定待分析图像,进而将该待分析图像输入到预设的检测模型中,得到当前时刻,关于目标语音关键事件检测防护舱的事件检测结果。这样,由于检测模型是基于各个样本图像和各个样本图像的事件检测结果所训练得到的模型,因此,检测模型充分学习了样本图像和事件检测结果之间的对应关系。基于此,在本发明实施例中,利用采集到的真实图像来确定待分析图像,利用训练好的检测模型对待分析图像进行检测。安徽无限语音关键事件检测语音关键事件检测工具使用。
用于将场景图像检测模型输出的检测结果和光流图检测模型输出的检测结果进行融合计算,基于融合计算的结果,确定关于目标防护舱的事件检测结果。可选的,一种具体实现方式中,上述结果确定单元包括:乘积计算子单元,用于根据场景图像检测模型和光流图检测模型的权重,计算场景图像检测模型输出的检测结果和场景图像检测模型的权重的乘积,并计算光流图检测模型输出的检测结果与光流图检测模型的权重的第二乘积;结果确定子单元,用于计算乘积和第二乘积的和值,基于和值,确定关于目标防护舱的事件监测结果。可选的,一种具体实现方式中,事件检测结果为:关于未发生异常事件的结果,或者,关于发生异常事件且所发生异常事件类型的结果。可选的,一种具体实现方式中,上述装置还包括:事件判断模块,用于当事件检测结果为关于发生异常事件且所发生异常事件类型的结果时,判断目标防护舱当前时刻发生的事件类型是否包括预设类型的事件;如果是,触发报警模块;报警模块,用于生成并发出与预设类型对应的报警信号。可选的,一种具体实现方式中,上述装置还包括:图像截取模块,用于当事件检测结果为关于发生异常事件且所发生异常事件类型的结果时,对当前帧图像进行截图。
直至电子设备判断预设时长内采集到的连续多帧图像中均包含相同的目标对象后,电子设备继续获得下一帧图像,即预设时长后的当前时刻对应的当前帧图像,并判断该当前帧图像中是否包括预设时长内采集到的连续多帧图像所包含的目标对象。这样,当判断结果为是时,电子设备便可以继续执行后续步骤s303。当前,光流法是图像分析领域中被重点关注的一种方法,所谓光流是指图像亮度模式的表观运动。可以理解的,当用户在防护舱中进行各类金融活动时,用户的某些身体部位也是运动的,例如,手指等。光流表达了图像的变化,可以引申出光流场。所谓光流场是指图像中所有像素点构成的一种二维(2d)瞬时速度场,其中的二维速度矢量是景物中可见点的三维速度矢量在成像表面的投影。这样,光流不包含了被观察物体的运动信息,而且还包含有关景物三维结构的丰富信息。因此,在本发明实施例中也可以引入光流法。可选的,一种具体实现方式中,上述本发明实施例提供的一种事件检测方法中,还可以包括如下步骤d1:步骤d1:每当获取到一帧图像时,利用该帧图像和该帧图像的前一帧图像,得到该帧图像对应的光流图;由于光流包含被观察物体的运动信息,因此,光流图表征的是两帧图像之间的变化。语音关键事件检测领域有哪些?
根据设定的span宽度,对语句进行span划分,以将语句划分为多个span,并对每个span进行标记;其中,每个标记表示x+y+1种类型中的任意一种,1表示所述触发词的类型和所述事件主体的类型以外的其他类型。在本申请的示例性实施例中,所述对所述向量化语义表示w1进行span划分,得到多个语义片段可以包括:获取设定的span的大宽度max_span_width;根据span的宽度从1到max_span_width依次在所述向量化语义表示w1上进行选取,获得多个span的语义表示span_embedding。在本申请的示例性实施例中,所述对所述新的语义表示w3进行span分类可以包括:使用两层全连接神经网络和softmax层对每个span进行分类;其中,在训练阶段,将分类结果与带有标记的span进行误差计算和反向传播。本申请还提供了一种事件检测装置,可以包括处理器和计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令被所述处理器执行时,实现上述任意一项所述的事件检测方法。与相关技术相比,本申请可以包括:获得语句的向量化语义表示w1;对所述向量化语义表示w1进行span划分,得到多个语义片段;对多个语义片段进行平均池化,得到每个span的表示w2。语音关键事件检测辨别声音有效吗?安徽无限语音关键事件检测
语音关键事件检测的应用步骤是如何的?广东数字语音关键事件检测内容
光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中包括n+1帧光流图。第二种情况:待分析图像为:当前帧图像和当前帧图像之前的连续m帧图像的多张图像;场景图像检测模型为:采用各个样本图像组和每个样本图像组的事件检测结果所训练得到的模型,且每一样本图像组中包括m+1帧场景图像;辅助图像为:光流图;光流图检测模型为:采用各个第二样本图像和每个第二样本图像的事件检测结果所训练得到的模型,且每个第二样本图像为一帧光流图。第三种情况:待分析图像为:当前帧图像;场景图像检测模型为:采用各个样本图像和每个样本图像的事件检测结果所训练得到的模型,且每个样本图像为一帧场景图像;辅助图像为:包括光流图和光流图之前的连续n帧光流图的多张图像;光流图检测模型为:采用各个第二样本图像组和每个第二样本图像组的事件检测结果所训练得到的模型,且每一第二样本图像组中包括n+1帧光流图。第四种情况:待分析图像为:当前帧图像;场景图像检测模型为:采用各个样本图像和每个样本图像的事件检测结果所训练得到的模型,且每个样本图像为一帧场景图像;辅助图像为:光流图。广东数字语音关键事件检测内容
深圳鱼亮科技有限公司成立于2017-11-03,同时启动了以Bothlent为主的智能家居,语音识别算法,机器人交互系统,降噪产业布局。业务涵盖了智能家居,语音识别算法,机器人交互系统,降噪等诸多领域,尤其智能家居,语音识别算法,机器人交互系统,降噪中具有强劲优势,完成了一大批具特色和时代特征的通信产品项目;同时在设计原创、科技创新、标准规范等方面推动行业发展。我们在发展业务的同时,进一步推动了品牌价值完善。随着业务能力的增长,以及品牌价值的提升,也逐渐形成通信产品综合一体化能力。深圳鱼亮科技始终保持在通信产品领域优先的前提下,不断优化业务结构。在智能家居,语音识别算法,机器人交互系统,降噪等领域承揽了一大批高精尖项目,积极为更多通信产品企业提供服务。
上一篇: 广东数字语音关键事件检测内容
下一篇: 四川电子类语音关键事件检测内容