江苏语音识别工具

时间:2023年12月14日 来源:

    应用背景随着信息时代的到来,语音技术、无纸化技术发展迅速,但是基于会议办公的应用场景,大部分企业以上技术应用都不够广,会议办公仍存在会议记录强度高、出稿准确率低,会议工作人员压力大等问题。为解决上述问题,智能语音识别编译管理系统应运而生。智能语音识别编译管理系统的主要功能是会议交流场景下语音实时转文字,解决了人工记录会议记要易造成信息偏差、整理工作量大、重要会议信息得不到体系化管控、会议发言内容共享不全等问题,提升语音技术在会议中的应用水平,切实提升会议的工作效率。实现功能智能语音识别编译管理系统对会议信息进行管理,实现实时(历史)会议语音转写和在线编辑;实现角色分离、自动分段、关键词优化、禁忌词屏蔽、语气词过滤;实现全文检索、重点功能标记、按句回听;实现展板设置、导出成稿、实时上屏等功能。技术特点语音转文字准确率高。系统中文转写准确率平均可达95%,实时语音转写效率能够达到≤200毫秒,能够实现所听即所见的视觉体验。系统能够结合前后文智能进行语句顺滑、智能语义分段,语音转写过程中也能够直接对转写的文本进行编辑,编辑完成后即可出稿。会议内容记录更完整。系统可实现对全部发言内容的记录。由于语音交互提供了更自然、更便利、更高效的沟通形式。江苏语音识别工具

    中国科学院声学所成为国内shou个开始研究计算机语音识别的机构。受限于当时的研究条件,我国的语音识别研究在这个阶段一直进展缓慢。放开以后,随着计算机应用技术和信号处理技术在我国的普及,越来越多的国内单位和机构具备了语音研究的成熟条件。而就在此时,外国的语音识别研究取得了较大的突破性进展,语音识别成为科技浪潮的前沿,得到了迅猛的发展,这推动了包括中科院声学所、中科院自动化所、清华大学、中国科技大学、哈尔滨工业大学、上海交通大学、西北工业大学、厦门大学等许多国内科研机构和高等院校投身到语音识别的相关研究当中。大多数的研究者将研究重点聚焦在语音识别基础理论研究和模型、算法的研究改进上。1986年3月,我国的"863"计划正式启动。"863"计划即国家高技术研究发展计划,是我国的一项高科技发展计划。作为计算机系统和智能科学领域的一个重要分支。语音识别在该计划中被列为一个专项研究课题。随后,我国展开了系统性的针对语音识别技术的研究。因此,对于我国国内的语音识别行业来说,"863"计划是一个里程碑,它标志着我国的语音识别技术进入了一个崭新的发展阶段。但是由于研究起步晚、基础薄弱、硬件条件和计算能力有限。湖北语音识别平台语音识别的基础理论包括语音的产生和感知过程、语音信号基础知识、语音特征提取等。

    DBN),促使了深度神经网络(DNN)研究的复苏。2009年,Hinton将DNN应用于语音的声学建模,在TIMIT上获得了当时比较好的结果。2011年底,微软研究院的俞栋、邓力又把DNN技术应用在了大词汇量连续语音识别任务上,降低了语音识别错误率。从此语音识别进入DNN-HMM时代。DNN-HMM主要是用DNN模型代替原来的GMM模型,对每一个状态进行建模,DNN带来的好处是不再需要对语音数据分布进行假设,将相邻的语音帧拼接又包含了语音的时序结构信息,使得对于状态的分类概率有了明显提升,同时DNN还具有强大环境学习能力,可以提升对噪声和口音的鲁棒性。简单来说,DNN就是给出输入的一串特征所对应的状态概率。由于语音信号是连续的,不仅各个音素、音节以及词之间没有明显的边界,各个发音单位还会受到上下文的影响。虽然拼帧可以增加上下文信息,但对于语音来说还是不够。而递归神经网络(RNN)的出现可以记住更多历史信息,更有利于对语音信号的上下文信息进行建模。由于简单的RNN存在梯度和梯度消散问题,难以训练,无法直接应用于语音信号建模上,因此学者进一步探索,开发出了很多适合语音建模的RNN结构,其中有名的就是LSTM。


    取距离近的样本所对应的词标注为该语音信号的发音。该方法对解决孤立词识别是有效的,但对于大词汇量、非特定人连续语音识别就无能为力。因此,进入80年代后,研究思路发生了重大变化,从传统的基于模板匹配的技术思路开始转向基于统计模型(HMM)的技术思路。HMM的理论基础在1970年前后就已经由Baum等人建立起来,随后由CMU的Baker和IBM的Jelinek等人将其应用到语音识别当中。HMM模型假定一个音素含有3到5个状态,同一状态的发音相对稳定,不同状态间是可以按照一定概率进行跳转;某一状态的特征分布可以用概率模型来描述,使用***的模型是GMM。因此GMM-HMM框架中,HMM描述的是语音的短时平稳的动态性,GMM用来描述HMM每一状态内部的发音特征。基于GMM-HMM框架,研究者提出各种改进方法,如结合上下文信息的动态贝叶斯方法、区分性训练方法、自适应训练方法、HMM/NN混合模型方法等。这些方法都对语音识别研究产生了深远影响,并为下一代语音识别技术的产生做好了准备。自上世纪90年代语音识别声学模型的区分性训练准则和模型自适应方法被提出以后,在很长一段内语音识别的发展比较缓慢,语音识别错误率那条线一直没有明显下降。DNN-HMM时代2006年。特别是远场语音识别已经随着智能音箱的兴起成为全球消费电子领域应用为成功的技术之一。

    自2015年以来,谷歌、亚马逊、百度等公司陆续开始了对CTC模型的研发和使用,并且都获得了不错的性能提升。2014年,基于Attention(注意力机制)的端到端技术在机器翻译领域中得到了广的应用并取得了较好的实验结果,之后很快被大规模商用。于是,JanChorowski在2015年将Attention的应用扩展到了语音识别领域,结果大放异彩。在近的两年里,有一种称为Seq2Seq(SequencetoSequence)的基于Attention的语音识别模型在学术界引起了极大的关注,相关的研究取得了较大的进展。在加拿大召开的国际智能语音领域的会议ICASSP2018上,谷歌公司发表的研究成果显示,在英语语音识别任务上,基于Attention的Seq2Seq模型表现强劲,它的识别结果已经超越了其他语音识别模型。但Attention模型的对齐关系没有先后顺序的限制,完全靠数据驱动得到,对齐的盲目性会导致训练和解码时间过长。而CTC的前向后向算法可以引导输出序列与输入序列按时间顺序对齐。因此CTC和Attention模型各有优势,可把两者结合起来。构建HybridCTC/Attention模型,并采用多任务学习,以取得更好的效果。2017年,Google和多伦多大学提出一种称为Transformer的全新架构,这种架构在Decoder和Encoder中均采用Attention机制。多人语音识别和离线语音识别也是当前需要重点解决的问题。江苏语音识别工具

而这也是语音识别技术当前发展比较火热的原因。江苏语音识别工具

    语音文件“/timit/test/dr5/fnlp0/”的波形图、语谱图和标注SwitchBoard——对话式电话语音库,采样率为8kHz,包含来自美国各个地区543人的2400条通话录音。研究人员用这个数据库做语音识别测试已有20多年的历史。LibriSpeech——英文语音识别数据库,总共1000小时,采样率为16kHz。包含朗读式语音和对应的文本。Thchs-30——清华大学提供的一个中文示例,并配套完整的发音词典,其数据集有30小时,采样率为16kHz。AISHELL-1——希尔贝壳开源的178小时中文普通话数据,采样率为16kHz。包含400位来自中国不同口音地区的发音人的语音,语料内容涵盖财经、科技、体育、娱乐、时事新闻等。语音识别数据库还有很多,包括16kHz和8kHz的数据。海天瑞声、数据堂等数据库公司提供大量的商用数据库,可用于工业产品的开发。08语音识别评价指标假设"我们明天去动物园"的语音识别结果如下:识别结果包含了删除、插入和替换错误。度量语音识别性能的指标有许多个,通常使用测试集上的词错误率(WordErrorRate,WER)来判断整个系统的性能,其公式定义如下:其中,NRef表示测试集所有的词数量,NDel表示识别结果相对于实际标注发生删除错误的词数量,NSub发生替换错误的词数量。江苏语音识别工具

信息来源于互联网 本站不为信息真实性负责