江西语音识别源码

时间:2023年12月14日 来源:

    汉语的音节由声母、韵母和音调构成,其中音调信息包含在韵母中。所以,汉语音节结构可以简化为:声母+韵母。汉语中有409个无调音节,约1300个有调音节。汉字与汉语音节并不是一一对应的。一个汉字可以对应多个音节,一个音节可对应多个汉字,例如:和——héhèhuóhuòhútián——填甜语音识别过程是个复杂的过程,但其终任务归结为,找到对应观察值序列O的可能的词序列W^。按贝叶斯准则转化为:其中,P(O)与P(W)没有关系,可认为是常量,因此P(W|O)的*大值可转换为P(O|W)和P(W)两项乘积的*大值,di一项P(O|W)由声学模型决定,第二项P(W)由语言模型决定。为了让机器识别语音,首先提取声学特征,然后通过解码器得到状态序列,并转换为对应的识别单元。一般是通过词典将音素序列(如普通话的声母和韵母),转换为词序列,然后用语言模型规整约束,后得到句子识别结果。例如,对"天气很好"进行词序列、音素序列、状态序列的分解,并和观察值序列对应。其中每个音素对应一个HMM,并且其发射状态(深色)对应多帧观察值。人的发音包含双重随机过程,即说什么不确定。怎么说也不确定,很难用简单的模板匹配技术来识别。更合适的方法是用HMM这种统计模型来刻画双重随机过程。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成。江西语音识别源码

    LSTM通过输入门、输出门和遗忘门可以更好的控制信息的流动和传递,具有长短时记忆能力。虽然LSTM的计算复杂度会比DNN增加,但其整体性能比DNN有相对20%左右稳定提升。BLSTM是在LSTM基础上做的进一步改进,不仅考虑语音信号的历史信息对当前帧的影响,还要考虑未来信息对当前帧的影响,因此其网络中沿时间轴存在正向和反向两个信息传递过程,这样该模型可以更充分考虑上下文对于当前语音帧的影响,能够极大提高语音状态分类的准确率。BLSTM考虑未来信息的代价是需要进行句子级更新,模型训练的收敛速度比较慢,同时也会带来解码的延迟,对于这些问题,业届都进行了工程优化与改进,即使现在仍然有很多大公司使用的都是该模型结构。图像识别中主流的模型就是CNN,而语音信号的时频图也可以看作是一幅图像,因此CNN也被引入到语音识别中。要想提高语音识别率,就需要克服语音信号所面临的多样性,包括说话人自身、说话人所处的环境、采集设备等,这些多样性都可以等价为各种滤波器与语音信号的卷积。而CNN相当于设计了一系列具有局部关注特性的滤波器,并通过训练学习得到滤波器的参数,从而从多样性的语音信号中抽取出不变的部分。

    重庆语音识别教程语音识别的精度和速度取决于实际应用环境。

    语音识别自半个世纪前诞生以来,一直处于不温不火的状态,直到2009年深度学习技术的长足发展才使得语音识别的精度提高,虽然还无法进行无限制领域、无限制人群的应用,但也在大多数场景中提供了一种便利高效的沟通方式。本篇文章将从技术和产业两个角度来回顾一下语音识别发展的历程和现状,并分析一些未来趋势,希望能帮助更多年轻技术人员了解语音行业,并能产生兴趣投身于这个行业。语音识别,通常称为自动语音识别,英文是AutomaticSpeechRecognition,缩写为ASR,主要是将人类语音中的词汇内容转换为计算机可读的输入,一般都是可以理解的文本内容,也有可能是二进制编码或者字符序列。但是,我们一般理解的语音识别其实都是狭义的语音转文字的过程,简称语音转文本识别(SpeechToText,STT)更合适,这样就能与语音合成(TextToSpeech,TTS)对应起来。语音识别是一项融合多学科知识的前沿技术,覆盖了数学与统计学、声学与语言学、计算机与人工智能等基础学科和前沿学科,是人机自然交互技术中的关键环节。但是,语音识别自诞生以来的半个多世纪,一直没有在实际应用过程得到普遍认可,一方面这与语音识别的技术缺陷有关,其识别精度和速度都达不到实际应用的要求。

    

    机器必然要超越人类的五官,能够看到人类看不到的世界,听到人类听不到的世界。语音识别的产业历程语音识别这半个多世纪的产业历程中,其中的共有三个关键节点,两个和技术有关,一个和应用有关。关键节点是1988年的一篇博士论文,开发了基于隐马尔科夫模型(HMM)的语音识别系统——Sphinx,当时实现这一系统的正是现在的投资人李开复。从1986年到2010年,虽然混合高斯模型效果得到持续改善,而被应用到语音识别中,并且确实提升了语音识别的效果,但实际上语音识别已经遭遇了技术天花板,识别的准确率很难超过90%。很多人可能还记得,在1998年前后IBM、微软都曾经推出和语音识别相关的软件,但终并未取得成功。第二个关键节点是2009年深度学习被系统应用到语音识别领域中。这导致识别的精度再次大幅提升,终突破90%,并且在标准环境下逼近98%。有意思的是,尽管技术取得了突破,也涌现出了一些与此相关的产品,比如Siri、GoogleAssistant等,但与其引起的关注度相比,这些产品实际取得的成绩则要逊色得多。Siri刚一面世的时候,时任GoogleCEO的施密特就高呼,这会对Google的搜索业务产生根本性威胁,但事实上直到AmazonEcho的面世,这种根本性威胁才真的有了具体的载体。语音识别的基本原理是现有的识别技术按照识别对象可以分为特定人识别和非特定人识别。

    主流方向是更深更复杂的神经网络技术融合端到端技术。2018年,科大讯飞提出深度全序列卷积神经网络(DFCNN),DFCNN使用大量的卷积直接对整句语音信号进行建模,主要借鉴了图像识别的网络配置,每个卷积层使用小卷积核,并在多个卷积层之后再加上池化层,通过累积非常多卷积池化层对,从而可以看到更多的历史信息。2018年,阿里提出LFR-DFSMN(LowerFrameRate-DeepFeedforwardSequentialMemoryNetworks)。该模型将低帧率算法和DFSMN算法进行融合,语音识别错误率相比上一代技术降低20%,解码速度提升3倍。FSMN通过在FNN的隐层添加一些可学习的记忆模块,从而可以有效的对语音的长时相关性进行建模。而DFSMN是通过跳转避免深层网络的梯度消失问题,可以训练出更深层的网络结构。2019年,百度提出了流式多级的截断注意力模型SMLTA,该模型是在LSTM和CTC的基础上引入了注意力机制来获取更大范围和更有层次的上下文信息。其中流式表示可以直接对语音进行一个小片段一个小片段的增量解码;多级表示堆叠多层注意力模型;截断则表示利用CTC模型的尖峰信息,把语音切割成一个一个小片段,注意力模型和解码可以在这些小片段上展开。在线语音识别率上。声学模型和语言模型都是当今基于统计的语音识别算法的重要组成部分。宁夏语音识别学习

主要是将人类语音中的词汇内容转换为计算机可读的输入。江西语音识别源码

    2)初始化离线引擎:初始化讯飞离线语音库,根据本地生成的语法文档,构建语法网络,输入语音识别器中;(3)初始化声音驱动:根据离线引擎的要求,初始化ALSA库;(4)启动数据采集:如果有用户有语音识别请求,语音控制模块启动实时语音采集程序;(5)静音切除:在语音数据的前端,可能存在部分静音数据,ALSA库开启静音检测功能,将静音数据切除后传送至语音识别引擎;(6)语音识别状态检测:语音控制模块定时检测引擎系统的语音识别状态,当离线引擎有结果输出时,提取语音识别结果;(7)结束语音采集:语音控制模块通知ALSA,终止实时语音数据的采集;(8)语义解析:语音控制模块根据语音识别的结果,完成语义解析,根据和的内容,确定用户需求,根据的内容,确认用户信息;(9)语音识别结束:语音控制模块将语义解析的结果上传至用户模块,同时结束本次语音识别。根据项目需求,分别在中等、低等噪音的办公室环境中,对语音拨号软件功能进行科学的测试验证。 江西语音识别源码

信息来源于互联网 本站不为信息真实性负责