广州新一代语音识别内容

时间:2022年01月19日 来源:

    LSTM通过输入门、输出门和遗忘门可以更好的控制信息的流动和传递,具有长短时记忆能力。虽然LSTM的计算复杂度会比DNN增加,但其整体性能比DNN有相对20%左右稳定提升。BLSTM是在LSTM基础上做的进一步改进,不仅考虑语音信号的历史信息对当前帧的影响,还要考虑未来信息对当前帧的影响,因此其网络中沿时间轴存在正向和反向两个信息传递过程,这样该模型可以更充分考虑上下文对于当前语音帧的影响,能够极大提高语音状态分类的准确率。BLSTM考虑未来信息的代价是需要进行句子级更新,模型训练的收敛速度比较慢,同时也会带来解码的延迟,对于这些问题,业届都进行了工程优化与改进,即使现在仍然有很多大公司使用的都是该模型结构。图像识别中主流的模型就是CNN,而语音信号的时频图也可以看作是一幅图像,因此CNN也被引入到语音识别中。要想提高语音识别率,就需要克服语音信号所面临的多样性,包括说话人自身、说话人所处的环境、采集设备等,这些多样性都可以等价为各种滤波器与语音信号的卷积。而CNN相当于设计了一系列具有局部关注特性的滤波器,并通过训练学习得到滤波器的参数,从而从多样性的语音信号中抽取出不变的部分。

    前端语音识别指命令者向语音识别引擎发出指令,识别出的单词在说话时显示出来,命令者负责编辑和签署文档。广州新一代语音识别内容

    听到人类听不到的世界。语音识别的产业历程语音识别这半个多世纪的产业历程中,其有三个关键节点,两个和技术有关,一个和应用有关。,开发了个基于模型的语音识别系统,当时实现这一系统。虽然混合高斯模型效果得到持续改善,而被应用到语音识别中,并且确实提升了语音识别的效果,但实际上语音识别已经遭遇了技术天花板,识别的准确率很难超过90%。很多人可能还记得,都曾经推出和语音识别相关的软件,但终并未取得成功。第二个关键节点是深度学习被系统应用到语音识别领域中。这导致识别的精度再次大幅提升,终突破90%,并且在标准环境下逼近98%。有意思的是,尽管技术取得了突破,也涌现出了一些与此相关的产品,但与其引起的关注度相比,这些产品实际取得的成绩则要逊色得多。刚一面世的时候,这会对搜索业务产生根本性威胁,但事实上直到的面世,这种根本性威胁才真的有了具体的载体。第三个关键点正是出现。

     湖北语音识别库语音识别应用包括语音用户界面,例如语音拨号、呼叫路由、多用户设备控制、搜索、简单的数据输入等。

    所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品,那就每家都要建立自己云服务稳定,确保响应速度,适配自己所选择的硬件平台,逐项整合具体的内容(比如音乐、有声读物)。这从产品方或者解决方案商的视角来看是不可接受的。这时候就会催生相应的平台服务商,它要同时解决技术、内容接入和工程细节等问题,终达成试错成本低、体验却足够好的目标。平台服务并不需要闭门造车,平台服务的前提是要有能屏蔽产品差异的操作系统,这是AI+IOT的特征,也是有所参照的,亚马逊过去近10年里是同步着手做两件事:一个是持续推出面向终端用户的产品,比如Echo,EchoShow等;一个是把所有产品所内置的系统Alexa进行平台化,面向设备端和技能端同步开放SDK和调试发布平台。虽然GoogleAssistant号称单点技术,但从各方面的结果来看Alexa是当之无愧的系统平台,可惜的是Alexa并不支持中文以及相应的后台服务。国内则缺乏亚马逊这种统治力的系统平台提供商,当前的平台提供商分为两个阵营:一类是以百度、阿里、讯飞、小米、腾讯的传统互联网或者上市公司;一类是以声智等为新兴人工智能公司。新兴的人工智能公司相比传统公司产品和服务上的历史包袱更轻。

    行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、酒店、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。所有语音交互产品都是端到端打通的产品,如果每家厂商都从这些基础技术来打造产品。

   语音识别在噪声中比在安静的环境下要难得多。

    美国**部下属的一个名为美国**高级研究计划局(DefenseAdvancedResearchProjectsAgency,DARPA)的行政机构,在20世纪70年代介入语音领域,开始资助一项旨在支持语言理解系统的研究开发工作的10年战略计划。在该计划推动下,诞生了一系列不错的研究成果,如卡耐基梅隆大学推出了Harpy系统,其能识别1000多个单词且有不错的识别率。第二阶段:统计模型(GMM-HMM)到了20世纪80年代,更多的研究人员开始从对孤立词识别系统的研究转向对大词汇量连续语音识别系统的研究,并且大量的连续语音识别算法应运而生,例如分层构造(LevelBuilding)算法等。同时,20世纪80年代的语音识别研究相较于20世纪70年代,另一个变化是基于统计模型的技术逐渐替代了基于模板匹配的技术。统计模型两项很重要的成果是声学模型和语言模型,语言模型以n元语言模型(n-gram),声学模型以HMM。HMM的理论基础在1970年前后由Baum等人建立,随后由卡耐基梅隆大学(CMU)的Baker和IBM的Jelinek等人应用到语音识别中。在20世纪80年代中期,Bell实验室的.Rabiner等人对HMM进行了深入浅出的介绍。并出版了语音识别专著FundamentalsofSpeechRecognition,有力地推动了HMM在语音识别中的应用。一个连续语音识别系统大致包含了四个主要部分:特征提取、声学模型、语言模型和解码器等。深圳新一代语音识别介绍

大规模的语音识别研究始于70年代,并在单个词的识别方面取得了实质性的进展。广州新一代语音识别内容

    CNN本质上也可以看作是从语音信号中不断抽取特征的一个过程。CNN相比于传统的DNN模型,在相同性能情况下,前者的参数量更少。综上所述,对于建模能力来说,DNN适合特征映射到空间,LSTM具有长短时记忆能力,CNN擅长减少语音信号的多样性,因此一个好的语音识别系统是这些网络的组合。端到端时代语音识别的端到端方法主要是代价函数发生了变化,但神经网络的模型结构并没有太大变化。总体来说,端到端技术解决了输入序列的长度远大于输出序列长度的问题。端到端技术主要分成两类:一类是CTC方法,另一类是Sequence-to-Sequence方法。传统语音识别DNN-HMM架构里的声学模型,每一帧输入都对应一个标签类别,标签需要反复的迭代来确保对齐更准确。采用CTC作为损失函数的声学模型序列,不需要预先对数据对齐,只需要一个输入序列和一个输出序列就可以进行训练。CTC关心的是预测输出的序列是否和真实的序列相近,而不关心预测输出序列中每个结果在时间点上是否和输入的序列正好对齐。CTC建模单元是音素或者字,因此它引入了Blank。对于一段语音,CTC**后输出的是尖峰的序列,尖峰的位置对应建模单元的Label,其他位置都是Blank。广州新一代语音识别内容

深圳鱼亮科技有限公司是一家语音识别,音效算法,降噪算法,机器人,智能玩具,软件服务,教育培训,芯片开发,电脑,笔记本,手机,耳机,智能穿戴,进出口服务,云计算,计算机服务,软件开发,底层技术开发,软件服务进出口,品牌代理服务。的公司,是一家集研发、设计、生产和销售为一体的专业化公司。深圳鱼亮科技深耕行业多年,始终以客户的需求为向导,为客户提供***的智能家居,语音识别算法,机器人交互系统,降噪。深圳鱼亮科技致力于把技术上的创新展现成对用户产品上的贴心,为用户带来良好体验。深圳鱼亮科技始终关注通信产品市场,以敏锐的市场洞察力,实现与客户的成长共赢。

信息来源于互联网 本站不为信息真实性负责