山东信息化语音关键事件检测特征

时间:2022年07月07日 来源:

    目标对象为:能够表征用户进入目标防护舱的用户身体部位;可以理解的,在某些时刻,目标防护舱内可能并不存在用户,则可以确定在这些时刻目标防护舱内不会发生异常事件。因此,为了节省电子设备的资源,减轻电子设备的运行负担,在获取到当前帧图像后,电子设备便可以利用图像识别算法对当前帧图像进行检测,判断当前帧图像是否包含目标对象。其中,当判断结果为是时,电子设备可以确定存在用户进入目标防护舱,则在当前时刻,目标防护舱内可能发生异常事件,这样,电子设备便可以继续执行步骤s303。需要说明的是,电子设备可以采用任一能够检测出当前帧图像中是否包含目标对象的图像识别算法执行上述步骤s302,对此,本发明实施例不做具体限定。此外,根据实际情况中,根据采集关于目标防护舱的图像的图像采集设备的安装位置,上述目标对象所指示的具体的用户身体部位可以不同。例如,当图像采集设备安装在舱顶时,该目标对象可以是用户的头肩部;当图像采集设备安装在舱壁时,目标对象可以是用户的全身图像。这都是合理的。s303:基于当前帧图像,确定待分析图像;其中,待分析图像为:关于目标防护舱及目标对象的图像。在判断得到当前帧图像中包括目标对象后。语音关键事件检测的维修指南。山东信息化语音关键事件检测特征

    告警装置13在接收到告警指令后,可以输出与告警指令对应的告警信号。告警装置13通过输出告警信号,提醒游泳场馆内的救生员当前存在溺水事件的发生。在实际应用中,告警装置13可以为便携式的智能手环。当智能手环接收到告警指令后,可以输出振动信号。智能手环可以被佩戴在游泳馆救生员的手腕上。当智能手环振动时,救生员即可获知当前有游泳者发生溺水。告警装置13也可以为智能手机。当智能手机接收到告警指令后,可以同时输出振动信号以及语音信号。救生员可以随身携带该智能手机。当智能手机输出振动信号及语音信号时,救生员即可获知当前有游泳者发生溺水。可以理解的是,告警装置13还可以为其他类型的终端。例如,告警装置13可以为游泳场馆内的广播台。当告警装置13接收到告警指令后,可以输出相应的告警信号,告警信号可以是振动信号、语音信号以及光信号中的至少一种。在判定目标人物溺水之后,若要及时进行应急营救,救生员需要及时地获知游泳者的溺水位置。在具体实施中,控制器12在判定目标人物溺水之后,还可以获取一次检测到目标人物出现在游泳池中的目标位置信息,并将目标位置信息输出至预先关联的告警装置13。安徽电子类语音关键事件检测特征语音关键事件检测是高科技吗?

    在本申请的示例性实施例中,在通过双向lstm网络获得语句的向量化语义表示w1之前,所述方法还可以包括:将语句中的m个字符随机初始化为一个维度为[m,n]的n维向量d,其中,对于从0到m-1的索引id,每个id对应一个不同的字符;对于长度为s的语句,该语句中每一个字符能够在向量d中找到对应的id,从而获得维度为[s,d]的向量。在本申请的示例性实施例中,通过双向lstm网络获得语句的向量化语义表示w1可以包括:将维度为[s,d]的向量输入预设的双向lstm神经网络,将所述双向lstm神经网络的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,通过bert模型获得语句的向量化语义表示w1可以包括:将语句直接输入所述bert模型,将所述bert模型的输出作为语句的向量化语义表示w1。在本申请的示例性实施例中,所述向量化语义表示w1的维度可以为[s,d1];其中,当通过双向lstm网络获得语句的向量化语义表示w1时,d1为2*lstm隐层节点数;当通过bert模型获得语句的向量化语义表示w1时,d1=768。在本申请的示例性实施例中,所述方法还可以包括:预先将触发词的类型划分为x种,将事件主体的类型划分为y种,其中,x、y均为正整数;在获得语句的向量化语义表示w1之前。

    便可以极大地减少监控人员在查看视频时所耗费的时间。另一种具体实现方式中,上述本发明实施例提供的一种事件检测方法还可以包括如下步骤c2:步骤c2:在关于目标防护舱的监控视频中,为当前帧图像添加第二标签,其中,第二标签包括:所发生异常事件类型对应的类型标签。当用于采集关于目标防护舱的图像的图像采集设备和用于对目标防护舱进行监控的摄像头为同一设备时,电子设备实时获取的关于目标防护舱的图像即为关于目标防护舱的监控视频中的每个视频帧。这样,当电子设备确定当前时刻目标防护舱内出现的异常事件的类型后,便可以通过第二标签对当前帧图像进行标记,该第二标签中包括:当前时刻目标防护舱内出现的异常事件的类型的类型标签。这样,当监控人员需要查看目标防护舱的监控视频中与该异常事件对应的视频内容时,便可以直接通过异常事件的类型标签,在监控视频的进度条上查找该类型标签对应的视频帧的录制时间。进一步的,监控人员便可以根据所查找到的时间,直接调取与该时间对应的监控视频的视频内容。这样,便可以极大地减少监控人员在查看视频时所耗费的时间。以上可见,应用本发明实施例提供的方案,实时获取目标防护舱的图像。语音关键事件检测主要应用在哪些领域?

    确定在时刻t0目标人物所处的位置信息,以及在时刻t1目标人物所处的位置信息。根据两个时刻目标人物所处的位置信息,可以获取目标人物的运动轨迹。根据目标人物的运动轨迹,可以获知目标人物所处的理论位置范围。在确定了目标人物的理论位置范围之后,控制器12可以从m个第二摄像头14采集到的实时图像中,识别出目标人物游泳时的动作姿势,进而获取目标人物的泳姿信息。在实际应用中,游泳者在游泳时,其对应的泳姿可以为蝶泳、蛙泳、仰泳、自由泳等。无论哪种泳姿,都存在一定的规律性。在具体实施中,控制器12可以采用现有的图像识别方法来识别目标人物游泳时的动作姿势。控制器12可以将识别出的动作姿势与现有的泳姿信息库进行比对,从而获知目标人物的泳姿信息。具体的比对过程也可以采用现有的匹配算法,本实用新型实施例不做赘述。在具体实施中,可以预先根据经验值,设置相应的目标频率值。例如,根据大数据统计分析,正常情况下,游泳者沉浮一次间隔的时间为15s,也即1分钟游泳者的沉浮频率为4次。此时,可以设置目标频率值为1分钟4次。可以理解的是,目标频率值也可以根据实际的应用场景进行设定,并不仅限于本实用新型上述实施例中提供的示例。语音关键事件检测的运用多吗?四川光纤数据语音关键事件检测特征

语音关键事件检测的稳定性怎么样?山东信息化语音关键事件检测特征

    本发明实施例提供的一种事件检测方法,包括如下步骤:s300:实时获取关于目标防护舱的图像,并将当前时刻所采集到的图像作为当前帧图像;其中,目标防护舱指代的是需要进行事件检测的防护舱,并不具有任何其他限定意义。目标防护舱所对应的目标图像采集设备,实时对目标防护舱的内部空间进行图像采集,并将得到的关于目标防护舱的图像实时传输给的目标防护舱所对应的电子设备。这样,电子设备便可以实时获取关于目标防护舱的图像。其中,可以理解的,关于目标防护舱的图像可以为目标防护舱内部空间的图像。也就是说,上述目标图像采集设备可以在每个时刻采集关于目标防护舱的图像,进而,电子设备可以在每个时刻获得在该时刻时,关于目标防护舱的图像,该图像显示了每个时刻目标防护舱的内容空间的情况。则在当前时刻,电子设备所获得的关于目标防护舱的图像即为在当前时刻,目标图像采集设备所采集的关于目标防护舱的图像,这样,电子设备可以将该图像作为当前帧图像。显然,电子设备可以基于当前帧时刻,确定当前时刻,关于目标防护舱的事件检测结果。s301:检测当前帧图像是否包含目标对象,如果是,执行步骤s303;其中。山东信息化语音关键事件检测特征

信息来源于互联网 本站不为信息真实性负责