四川量子麦克风阵列特征

时间:2022年07月07日 来源:

    9)在中找到一个子集,使得中的任意值要大于的平均值;10)类似于步骤3)和步骤4),在当前的搜索空间中随机选取个点,计算它们所对应的的值;11)将中的点放入子集中,并选取中值大的个点放入子集中,保存,放入下一次迭代时使用;12)令,进行下一次迭代,返回步骤5)。我们可以得到根据不同的定位精度需要、不同的麦克风个数需求与阵列大小,自行选择适用于自身实际场景的麦克风阵列。当说话人的语音经过室内环境所产生的声学信道传播,通过麦克风阵列的前置放大器进行接收,将接收到的各个麦克风信号进行基于多通道低通滤波与多通道自适应滤波的融合滤波,先由低通滤波器滤除掉说话人声信号以外的噪声,再由自适应滤波器校准接收信号的幅频特性,校准前后幅频特性,从而使定位效果更准确。使用无线连接方式操控便携式可视化麦克风阵列。四川量子麦克风阵列特征

    电容c4的另一端接地,电阻r7的另一端连接电阻r6的另一端、电容c1的一端,放大器u2的7脚连接电阻r9的另一端、电容c1的另一端;二级带通滤波电路由型号为op275的运算放大器和贴片电阻电容组成,通过构建二阶低通电路和二阶高通电路形成带通滤波,后使得系统的理论通带为160-12000hz,该频带满足ci滤波器组的频带要求同时省去50hz陷波电路的设计,在确保滤波、放大功能的同时,进一步减小了系统的硬件体积。电源管理电路包括:升压转换器u3、稳压电源u4、稳压器u5、插座j1、开关j2、电感l1、l2,、电容c9~c21、电阻r11~r13,升压转换器u3的1脚、2脚连接后接入电感l1的一端,升压转换器u3的11脚接地,升压转换器u3的3脚、4脚连接后与电阻r11的一端、电阻r12的一端、电容c13的一端、电容c9的一端、电容c10的一端、电容c11的一端连接后接入到电源,升压转换器u3的5脚连接电阻r11的另一端,电容c9的另一端、电容c10的另一端、电容c11的另一端互相连接后接地;升压转换器u3的6脚连接电容c12的一端,电容c12的另一端连接电阻r13的一端后接地,升压转换器u3的7脚、电阻r13的另一端、电阻r12的另一端、电容c13的另一端互相连接。安徽信息化麦克风阵列介绍对麦克风阵列频率响应的校准对于室内移动声源定位精度的进一步提升具有重要意义。

    得到目标语言的文本信息后,传送给结果确认模块;a4:结果确认模块按照用户的预设的翻译结果确认方式,将目标语言的文本信息以文本的形式显示给用户,或者将得到的目标语言的文本信息通过语音合成模块转换为音频数据后,通过播放软件将音频数据实时播放给用户;翻译模块单独安装在移动设备上,如手机、pad等设备,在普通模式下,基于其所在移动设备的声音采集模块采集目标声源的声信号,然后送入翻译模块进行实时翻译。本实施例中,翻译模块为使用java语言通过androidstudio开发环境开发,作为软件安装在手机中,通过无线方式与语音增强模块进行通信;翻译模块中通过三个子功能模块实现实时翻译流程:读转写模块:实现实时语音转文字功能;实时翻译模块:基于现有的翻译引擎实现实时翻译功能;语音合成模块:实现将文本数据转为音频数据的语音合成功能;读转写模块的实时语音转文字功能通过讯飞开放平台的语音转写技术实现;支持采样率为16k,位长为16bits,格式为pcm_s16le的单声道音频;字符编码为utf-8,响应格式采用统一的json格式;实时语音转写接口的调用过程分为两个阶段,个阶段为握手阶段,第二个阶段为实时通信阶段。握手阶段需要生成signal。

    音频转换模块包括音频解码器和,语音增强模块基于数字信号处理器dsp实现;语音增强模块通过数字信号处理器芯片的i2c接口向音频解码器发送控制信号,通过数字信号处理器芯片的mcasp接口连接音频解码器,交换数字音频信号的数据。语音增强模块中通过预先植入的语音增强算法对音频转换模块传入的声信号进行增强处理;语音增强算法包括以下步骤:s1:定义麦克风阵列中与目标声源s1接近的麦克风为前向麦克风mic1,其采集到的声信号为m1(n),另一个麦克风mic2采集到的声信号为m2(n);对声信号m1(n)、m2(n)进行分帧与加窗之后,再进行时频变换即得到频域信号m1(l,k)和m2(l,k),其中:l和k分别是频率点和时间窗的序号;s2:因为同一个声源的声信号到达两个麦克风mic1、mic2的时间存在延迟,计算延迟系数t(l,k);s3:将延迟系数与目标声源的理想延迟时间δ1进行比较,确定目标声源的能量所占成分;延迟系数t(l,k)的计算方法包括如下步骤:设目标声源存在竞争性语音噪声:干扰噪声源1、干扰噪声源2...干扰噪声源num-1,其中,num取值为自然数;目标声源偏离正向的角度为θ1,θ1的值为0°或非常接近0°。根据麦克风阵列的拓扑结构,则可分为线性阵列、平面阵列、体阵列等。

    这两者的区别就是回声的时延更长。一般来说,超过100毫秒时延的混响,人类能够明显区分出,似乎一个声音同时出现了两次,我们就叫做回声,比如天坛着名的回声壁。实际上,这里所指的是语音交互设备自己发出的声音,比如Echo音箱,当播放歌曲的时候若叫Alexa,这时候麦克风阵列实际上采集了正在播放的音乐和用户所叫的Alexa声音,显然语音识别无法识别这两类声音。回声抵消就是要去掉其中的音乐信息而只保留用户的人声,之所以叫回声抵消,只是延续大家的习惯而已,其实是不恰当的。声源测向:这里没有用声源定位,测向和定位是不太一样的,而消费级麦克风阵列做到测向就可以了,没必要在这方面投入太多成本。声源测向的主要作用就是侦测到与之对话人类的声音以便后续的波束形成。声源测向可以基于能量方法,也可以基于谱估计,阵列也常用TDOA技术。声源测向一般在语音唤醒阶段实现,VAD技术其实就可以包含到这个范畴,也是未来功耗降低的关键研究内容。波束形成:波束形成是通用的信号处理方法,这里是指将一定几何结构排列的麦克风阵列的各麦克风输出信号经过处理(例如加权、时延、求和等)形成空间指向性的方法。波束形成主要是抑制主瓣以外的声音干扰,这里也包括人声。基于麦克风阵列的室内移动声源定位研究均在麦克风阵列接收信号频率响应保持高度一致性的假设下进行。四川量子麦克风阵列特征

平面麦克风阵列实现平面360度等效拾音麦克风越多,语音增强和降噪效果越好用于智能音箱和交互机器人上。四川量子麦克风阵列特征

    现在的口径还是较大,声智科技现在可以做到2cm-8cm的间距,但是结构布局仍然还是限制了ID设计的自由性。很多产品采用2个麦克风其实并非成本问题,而是ID设计的考虑。实际上,借鉴雷达领域的合成孔径方法,麦克风阵列可以做的更小,而且这种方法已经在领域成熟验证,移植到消费领域只是时间问题。还有一个趋势是麦克风阵列的低成本化,当前无论是2个麦克风还是4、6个麦克风阵列,成本都是比较高的,这影响了麦克风阵列的普及。低成本化不是简单的更换芯片器件,而是整个结构的重新设计,包括器件、芯片、算法和云端。这里要强调一下,并非2个麦克风的阵列成本就便宜,实际上2个和4个麦克风阵列的相差不大,2个麦克风阵列的成本也要在60元左右,但是这还不包含进行回声抵消的硬件成本,若综合比较,实际上成本相差不大。特别是今年由于新技术的应用,多麦克风阵列的成本下降非常明显。再多说一个趋势就是多人声的处理和识别,其中典型的是鸡尾酒会效应,人的耳朵可以在嘈杂的环境中分辨想要的声音,并且能够同时识别多人说话的声音。现在的麦克风阵列和语音识别还都是单人识别模式,距离多人识别的目标还很远。前面提到了现在的算法思想主要是“抑制”,而不是“利用”。四川量子麦克风阵列特征

信息来源于互联网 本站不为信息真实性负责